
R&S[®]SMW-K42/-K83 3GPP FDD incl. enhanced MS/BS tests, HSPA, HSPA+ User Manual

This document describes the following software options:

 R&S[®]SMW-K42/-K83 1413.3784.xx, 1413.4580.xx

This manual describes firmware version FW 3.20.390.xx and later of the R&S®SMW200A.

© 2015 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany Phone: +49 89 41 29 - 0 Fax: +49 89 41 29 12 164 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com Subject to change – Data without tolerance limits is not binding. R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S[®]SMW200A is abbreviated as R&S SMW, R&S[®]WinIQSIM2[™] is abbreviated as R&S WinIQSIM2; the license types 02/03/07/11/13/16/12 are abbreviated as xx.

Contents

1	Preface	13
1.1	About this Manual	13
1.2	Documentation Overview	14
1.3	Conventions Used in the Documentation	15
1.3.1	Typographical Conventions	15
1.3.2	Conventions for Procedure Descriptions	16
1.3.3	Notes on Screenshots	16
2	Welcome to the 3GPP FDD Digital Standard	17
2.1	Accessing the 3GPP FDD Dialog	19
2.2	Scope	19
3	About the 3GPP FDD Options	20
3.1	Modulation System 3GPP FDD	21
3.1.1	Scrambling Code Generator	21
3.1.1.1	Downlink Scrambling Code Generator	21
3.1.1.2	Uplink Scrambling Code Generator	
3.1.2	Scrambling Unit	24
3.1.3	Channelization Code Generator	25
3.1.4	Data Source	
3.1.5	Slot and Frame Builder	
3.1.6	Timing Offset	26
3.1.7	Demultiplexer	
3.1.8	Power Control	
3.1.9	Summation and Filtering	
3.1.10	Multicode	28
3.1.11	Orthogonal Channel Noise (OCNS)	
3.1.11.1	Standard, HSDPA and HSDPA2 modes	
3.1.11.2	3i OCNS mode	
3.1.12	HARQ Feedback	
3.1.12.1	Limitations	
3.1.12.2	Setup	32
3.1.12.3	Timing	

4	3GPP FDD Configuration and Settings	53
3.2	Routing and enabling an external control signal	52
3.1.21	Uplink User Scheduling	49
3.1.20	Uplink discontinuous transmission (UL DTX)	47
3.1.19.4	Dual Cell E-DCH Operation UE Capabilities	47
3.1.19.3	MIMO and DC-HSDPA Operation UE Capabilities	
3.1.19.2	UL 16QAM UE Capabilities	47
3.1.19.1	MIMO and 64QAM UE Capabilities	46
3.1.19	UE Capabilities	46
3.1.18	Dual Cell HSUPA (Dual Cell E-DCH)	46
3.1.17	HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA	46
3.1.16.3	Dual Cell HSDPA (DC-HSDPA) Fixed Reference Channel: H-Set 12	45
3.1.16.2	DC-HSDPA + MIMO	45
	CQI reports: CQI1 and CQI2	45
3.1.16.1	DC-HSDPA Data Acknowledgement (non MIMO mode)	
3.1.16	Dual Cell HSDPA (DC-HSDPA)	42
3.1.15.8	MIMO Fixed Reference Channels: H-Set 9 and H-Set 11	
3.1.15.7	PCI reports	41
3.1.15.6	CQI Reports: Type A and Type B	
3.1.15.5	MIMO uplink control channel support	40
3.1.15.4	HARQ Processes	
3.1.15.3	Redundancy Version	
3.1.15.2	MIMO downlink control channel support	
3.1.15.1	D-TxAA Feedback signaling: PCI and CQI	
3.1.15	MIMO in HSPA+	
3.1.14.4	16QAM Fixed Reference Channel: FRC 8	
3.1.14.3	16QAM in uplink	
3.1.14.2	64QAM Fixed Reference Channel: H-Set 8	
3.1.14.1	64QAM in downlink	
3.1.14	Higher Order Modulation	35
3.1.13.2	HS-SCCH Type 2 Fixed Reference Channel: H-Set 7	35
3.1.13.1	HS-SCCH Type 2	34
3.1.13	HS-SCCH less operation	

4.1	General Settings for 3GPP FDD Signals	54
4.2	Trigger Settings	56
4.3	Marker Settings	61
4.4	Clock Settings	
4.5	Local and Global Connector Settings	65
4.6	Basestations and User Equipments Settings	66
4.6.1	Common Configuration Settings	
4.6.2	General Power Settings	
4.7	Test Setups/Models	
4.8	Predefined Settings - Downlink	
4.9	Additional User Equipment - Uplink	78
4.10	Base Station Settings	
4.10.1	Common Settings	80
4.10.2	Orthogonal Channel Noise (OCNS) Settings	
4.10.3	Channel Table	83
4.10.4	Channel Graph - BS	89
4.10.5	Code Domain Graph - BS	
4.11	Compressed Mode	93
4.11.1	Compressed Mode General Settings	94
4.11.2	Compressed Mode Configuration Graph	
4.11.2.1	Transmission Gaps	
4.11.2.2	Compressed Ranges	
4.11.2.3	Non-compressed ranges	
4.12	HSDPA Settings - BS	
4.12.1	Enhanced HSDPA Mode Settings	
4.12.2	MIMO Configuration	
4.13	HSDPA H-Set Mode Settings - BS	103
4.13.1	HSDPA H-Set General Setting	103
4.13.2	H-Set Configuration Common Settings	
4.13.3	MIMO Settings	
4.13.4	Global Settings	108
4.13.5	Coding Configuration	111
4.13.6	Signal Structure	114

4.13.7	HARQ Simulation	
4.13.8	Error Insertion	117
4.13.9	Randomly Varying Modulation And Number Of Codes (Type 3i) Settings	118
4.14	Enhanced Settings for P-CPICH - BS1	120
4.15	Enhanced Settings for P-CCPCH - BS1	121
4.15.1	Channel Number and State	121
4.15.2	Channel Coding - Enhanced P-CCPCH BS1	
4.16	Enhanced Settings for DPCHs - BS1	123
4.16.1	Channel Number and State	124
4.16.2	Channel Coding	125
4.16.3	Transport Channel - Enhanced DPCHs BS1	128
4.16.4	Error Insertion - Enhanced DPCHs BS1	131
4.16.5	Dynamic Power Control - Enhanced DPCHs BS1	133
4.17	S-CCPCH Settings - BS Channel Table	138
4.18	Config AICH/AP-AICH - BS Channel Table	139
4.19	DPCCH Settings - BS Channel Table	140
4.19.1	Common Slot Structure (DPCCH)	140
4.19.2	TPC Settings	
4.19.3	DPCCH Power Offset	146
4.20	Config E-AGCH - BS Channel Table	147
4.21	Config E-RGCH/E-HICH - BS Channel Table	149
4.22	Config F-DPCH - BS Channel Table	151
4.22.1	Common Settings	151
4.22.2	TPC Settings	
4.23	Multi Channel Assistant - BS	155
4.24	User Equipment Configuration (UE)	159
4.24.1	General and Common Settings	160
4.24.2	Code Domain Graph - UE	162
4.24.3	Channel Settings	
4.25	UL-DTX/User Scheduling - UE	163
4.26	Dynamic Power Control - UE	168
4.27	Scheduling List	172
4.28	DPCCH Settings - UE	

4.29	DPDCH Settings - UE	180
4.29.1	DPDCH Common Settings	181
4.29.2	Channel Table	183
4.30	HS-DPCCH Settings - UE	185
4.30.1	About HS-DPCCH	186
4.30.2	HS-DPCCH Common Settings	188
4.30.3	HS-DPCCH Scheduling Table (Release 8 and Later/Release 8 and Later RT)	192
4.30.4	HS-DPCCH Settings for Normal Operation (Up to Release 7)	201
4.30.5	MIMO Settings HS-DPCCH (Up to Release 7)	203
4.31	E-DPCCH Settings - UE	207
4.32	HSUPA FRC Settings - UE	208
4.32.1	FRC General Settings	209
4.32.2	Coding And Physical Channels Settings	210
4.32.3	DTX Mode Settings	214
4.32.4	HARQ Simulation Settings	215
4.32.5	Bit and Block Error Insertion Settings	219
4.33	E-DPDCH Settings - UE	220
4.33.1	E-DPDCH Common Settings	221
4.33.2	Channel Table	222
4.34	E-DCH Scheduling - UE	224
4.35	Global Enhanced Channel Settings - UE1	227
4.35.1	Enhanced Channels State	228
4.35.2	Channel Coding	228
4.35.3	Transport Channel	232
4.35.4	Error Insertion	235
4.36	PRACH Settings - UE	236
4.36.1	Graphical Display	239
4.36.2	Preamble Settings	242
4.36.3	Message Part Settings	244
4.36.4	Channel Coding State	246
4.37	PCPCH Settings - UE	247
4.37.1	Graphical Display	249
4.37.2	Preamble Settings	252

4.37.3	Message Part Settings	254
4.37.4	Channel Coding Settings	257
4.38	Filtering, Clipping, ARB Settings	259
4.38.1	Filter Settings	259
4.38.2	Clipping Settings	261
4.38.3	ARB Settings	263
5	How to Work with the 3GPP FDD Option	264
5.1	Resolving Domain Conflicts	264
5.2	Using the DL-UL Timing Offset Settings	266
5.3	Configuring UL-DTX Transmission and Visualizing the Scheduling	267
5.4	Configuring and Visualizing the Uplink User Scheduling	269
5.5	How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests	271
6	Application Sheets	273
6.1	Uplink Dual Cell HSDPA Test Signal Generation	
6.1.1	Options and Equipment Required	273
6.1.2	Test Setup	273
6.1.3	Generating an uplink DC-HSDPA Test Signal (Non MIMO Mode)	274
6.1.4	Generating an Uplink Test Signal for Simultaneous Dual Cell and MIMO Operati	on. 275
7	Performing Base Stations Tests According to TS 25.141	277
7.1	Introduction	277
7.1.1	General Considerations	279
7.1.2	General Settings	281
7.1.3	Basestation Configuration	285
7.1.4	Apply	286
7.2	Receiver Tests	286
7.2.1	Overview	286
7.2.1.1	Basic Configuration	286
7.2.1.2	Test Setups - Receiver Tests	287
	Standard Test Setup - One Path	287
	Standard Test Setup - Two Paths	287
	Standard Test Setup - Diversity Measurements	288
7.2.1.3	Carrying Out a Receiver Test Measurement	288

7.2.1.4	General Wanted Signal Parameters	289
7.2.2	Receiver Characteristics	290
7.2.2.1	Test Case 7.2 - Reference Sensitivity Level	290
	Test Purpose and Test Settings - Test Case 7.2	291
7.2.2.2	Test Case 7.3 - Dynamic Range	292
	Test Purpose and Test Settings - Test Case 7.3	293
7.2.2.3	Test Case 7.4 - Adjacent Channel Selectivity	295
	Test Purpose and Test Settings - Test Case 7.4	295
7.2.2.4	Test Case 7.5 - Blocking Characteristics	297
	Test Purpose and Test Settings - Test Case 7.5	298
	Interferer Signal	300
	Blocking performance requirements	302
7.2.2.5	Test Case 7.6 - Intermodulation Characteristics	306
	Test Purpose and Test Settings - Test Case 7.6	307
7.2.2.6	Test Case 7.8 - Verification of Internal BER	310
	Test Purpose and Test Settings - Test Case 7.8	311
7.2.3	Performance Requirements	313
7.2.3.1	Test Case 8.2.1 - Demodulation of DCH in Static Propagation Conditions	313
	Test Purpose and Test Settings - Test Case 8.2.1	314
7.2.3.2	Test Case 8.3.1 - Demodulation of DCH in Multipath Fading Case 1 Conditions	316
	Test Purpose and Test Settings - Test Case 8.3.1	317
7.2.3.3	Test Case 8.3.2 - Demodulation of DCH in Multipath Fading Case 2 Conditions	319
7.2.3.4	Test Case 8.3.3 - Demodulation of DCH in Multipath Fading Case 3 Conditions	320
7.2.3.5	Test Case 8.3.4 - Demodulation of DCH in Multipath Fading Case 4 Conditions	320
7.2.3.6	Test Case 8.4 - Demodulation of DCH in Moving Propagation Conditions	322
7.2.3.7	Test Case 8.5 - Demodulation of DCH in Birth/Death Propagation Conditions	322
7.2.3.8	Test Case 8.6 - Verification of Internal BLER	323
	Test Purpose and Test Settings - Test Case 8.6	323
7.2.3.9	Test Case 8.8.1 - RACH Preamble Detection in Static Propagation Conditions	325
	Test Purpose and Test Settings - Test Case 8.8.1	326
7.2.3.10	Test Case 8.8.2 - RACH Preamble Detection in Multipath Fading Case 3	329
	Test Purpose and Test Settings - Test Case 8.8.2	329
7.2.3.11	Test Case 8.8.3 - RACH Demodulation of Message Part in Static Propagation Con	
	tions	331

	Test Purpose and Test Settings - Test Case 8.8.3	332
7.2.3.12	Test Case 8.8.4 - RACH Demodulation of Message Part in Multipath Fading Cas	
	Test Purpose and Test Settings - Test Case 8.8.4	
7.2.3.13	Test Case 8.9.1 - CPCH Access Preamble and Collision Detection Preamble De in Static Propagation Conditions	
7.2.3.14	Test Case 8.9.2 - CPCH Access Preamble and Collision Detection Preamble De in Multipath Fading Case 3	
7.2.3.15	Test Case 8.9.3 - Demodulation of CPCH Message in Static Propagation Condition	
7.2.3.16	Test Case 8.9.4 - Demodulation of CPCH Message in Multipath Fading Case 3	338
7.3	Transmitter Tests	338
7.3.1	Basic Configuration	338
7.3.2	Test Case 6.4.2 - Power Control Steps	339
7.3.2.1	Test Purpose and Test Settings - Test Case 6.4.2	340
7.3.2.2	Carrying Out the Test Case 6.4.2 Measurement	344
7.3.3	Test Case 6.6 - Transmit Intermodulation	345
7.3.3.1	Test Purpose and Test Settings - Test Case 6.6	346
7.3.3.2	Carrying Out a Test Case 6.6 Measurement	349
7.3.3.2 8	Carrying Out a Test Case 6.6 Measurement	
		351
8	Remote-Control Commands	351 352
8 8.1	Remote-Control Commands General Commands	351 352 358
8 8.1 8.2	Remote-Control Commands General Commands Filter/Clipping Settings	351 352 358 362
8 8.1 8.2 8.3	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings	351 352 358 362 369
8 8.1 8.2 8.3 8.4	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings Marker Settings	351 352 358 362 369 372
8 8.1 8.2 8.3 8.4 8.5	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings Marker Settings Clock Settings	351 352 358 362 369 372 373
8 8.1 8.2 8.3 8.4 8.5 8.6	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings Marker Settings Clock Settings Test Models and Predefined Settings	351 352 358 362 369 372 373 378
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings Marker Settings Clock Settings Test Models and Predefined Settings Setting Base Stations	351 352 358 362 369 372 373 378 426
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings Marker Settings Clock Settings Test Models and Predefined Settings Setting Base Stations Enhanced Channels of Base Station 1	351 352 358 362 369 372 373 378 426 426
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.8.1	Remote-Control Commands General Commands Filter/Clipping Settings Trigger Settings Marker Settings Clock Settings Test Models and Predefined Settings Setting Base Stations Enhanced Channels of Base Station 1 General Settings	351 352 358 362 369 373 373 378 426 427
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.8.1 8.8.2	Remote-Control Commands. General Commands. Filter/Clipping Settings. Trigger Settings. Marker Settings. Clock Settings. Test Models and Predefined Settings. Setting Base Stations. Enhanced Channels of Base Station 1. General Settings. Channel Coding.	351 352 358 362 369 373 373 378 426 427 439
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.8.1 8.8.2 8.8.3	Remote-Control Commands. General Commands. Filter/Clipping Settings. Trigger Settings. Marker Settings. Clock Settings. Test Models and Predefined Settings. Setting Base Stations. Enhanced Channels of Base Station 1. General Settings. Channel Coding. Dynamic Power Control Settings.	351 352 358 362 369 373 378 426 426 427 439 443

8.9.2	Compressed Mode Settings	452
8.9.3	DPCCH Settings	454
8.9.4	HS-DPCCH Settings	461
8.9.4.1	Common Settings	461
8.9.4.2	Up to Release 7 Settings	463
8.9.4.3	Release 8 and Later (RT) Settings	471
8.9.5	DPDCH Settings	479
8.9.6	PCPCH Settings	483
8.9.7	PRACH Settings	494
8.9.8	HSUPA Settings	502
8.9.9	UL-DTX and Uplink Scheduling Settings	523
8.9.10	Dynamic Power Control Settings	528
8.10	Enhanced Channels of the User Equipment	532
8.11	Setting up Test Cases according to TS 25.141	545
	Annex	. 567
Α	Reference	.567
	List of Commands	.574
	Index	.585

12

1 Preface

1.1 About this Manual

This user manual provides all the information **specific to the digital standard 3GPP FDD**.

All general instrument functions and settings common to all applications and operating modes are described in the main R&S SMW User Manual.

The main focus in this manual is on the provided settings and the tasks required to generate a signal. The following topics are included:

- Welcome to the 3GPP FDD options R&S SMW-K42/-K83 Introduction to and getting familiar with the option
- About the 3GPP FDD and Basics Background information on basic terms and principles in the context of the signal generation
- 3GPP FDD Configuration and Settings
 A concise description of all functions and settings available to configure signal generation with their corresponding remote control commands
- How to Generate a Signal with the 3GPP FDD Options The basic procedure to perform signal generation tasks and step-by-step instructions for more complex tasks or alternative methods As well as detailed examples to guide you through typical signal generation scenarios and allow you to try out the application immediately

• Application Examples

Example signal generation scenarios in which the option is frequently used.

Test Case Wizard

Description of the provided test cases for tests on Base Stations in Conformance with the 3G Standard 3GPP FDD

Remote Control Commands

Remote commands required to configure and perform signal generation in a remote environment, sorted by tasks

(Commands required to set up the instrument or to perform common tasks on the instrument are provided in the main R&S SMW user manual)

Programming examples demonstrate the use of many commands and can usually be executed directly for test purposes

• Annex

Reference material, such as extensive lists

• List of remote commands

Alphabetical list of all remote commands described in the manual

Index

1.2 Documentation Overview

The user documentation for the R&S SMW consists of the following parts:

- Getting started, printed manual
- Online help system on the instrument, incl. tutorials
- User manuals and online manual, see the product page
- Service manual, provided on the internet for registrated users
- Instrument security procedures, see the product page
- General safety instructions, printed brochure
- Release notes, see the product page (download > firmware)
- Data sheet and brochures, see the product page (download > brochures and data sheets)
- Application notes, provided on the internet

You find the user documentation on the R&S SMW product page mainly at: http://www.rohde-schwarz.com/product/SMW200A.html > "Downloads" > "Manuals" Additional download paths are stated directly in the following abstracts of the documentation types.

Getting Started

Introduces the R&S SMW and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc.

Online Help and Tutorials

The **online help** offers quick, context-sensitive access to the information needed for operation and programming. It contains the description for the base unit and the software options.

The tutorials offer guided examples and demonstrations on operating the R&S SMW.

User Manual and Online Manual

Separate manuals are provided for the base unit and the software options:

Base unit manual

Contains the description of the graphical user interface, an introduction to remote control, the description of all SCPI remote control commands, programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the getting started manual.

Software option manuals

Describe the specific functions of an option. Basic information on operating the R&S SMW is not included.

The **online manual** provides the contents of the user manual for immediate display on the internet.

Service Manual

Describes the performance test for checking the rated specifications, module replacement and repair, firmware update, troubleshooting and fault elimination, and contains mechanical drawings and spare part lists.

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS).

Instrument Security Procedures

Deals with security issues when working with the R&S SMW in secure areas.

Data Sheets and Brochures

The data sheet contains the technical specifications of the R&S SMW. Brochures provide an overview of the instrument and deal with the specific characteristics, see http:// www.rohde-schwarz.com/product/SMW200A.html > "Download" > "Brochures and Data Sheets".

General Safety Instructions

Contains basic safety instructions in English, Spanish, German and French.

Release Notes

Describes the firmware installation, new and modified features and fixed issues according to the current firmware version. You find the latest version at:

http://www.rohde-schwarz.com/product/SMW200A.html > "Downloads" > "Firmware"

Application Notes, Application Cards, White Papers, etc.

These documents deal with special applications or background information on particular topics, see http://www.rohde-schwarz.com/appnotes.

1.3 Conventions Used in the Documentation

1.3.1 Typographical Conventions

The following text markers are used throughout this documentation:

Convention	Description
"Graphical user interface ele- ments"	All names of graphical user interface elements on the screen, such as dialog boxes, menus, options, buttons, and softkeys are enclosed by quotation marks.
KEYS	Key names are written in capital letters.

Conventions Used in the Documentation

Convention	Description
File names, commands, program code	File names, commands, coding samples and screen output are distin- guished by their font.
Input	Input to be entered by the user is displayed in italics.
Links	Links that you can click are displayed in blue font.
"References"	References to other parts of the documentation are enclosed by quota- tion marks.

1.3.2 Conventions for Procedure Descriptions

When describing how to operate the instrument, several alternative methods may be available to perform the same task. In this case, the procedure using the touchscreen is described. Any elements that can be activated by touching can also be clicked using an additionally connected mouse. The alternative procedure using the keys on the instrument or the on-screen keyboard is only described if it deviates from the standard operating procedures.

The term "select" may refer to any of the described methods, i.e. using a finger on the touchscreen, a mouse pointer in the display, or a key on the instrument or on a key-board.

1.3.3 Notes on Screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as much as possible of the provided functions and possible interdependencies between parameters. The shown values may not represent realistic test situations.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.

2 Welcome to the 3GPP FDD Digital Standard

The R&S SMW-K42/-K83 are firmware applications that add functionality to generate signals in accordance with the WCDMA standard 3GPP FDD.

WCDMA (Wideband CDMA) describes a group of mobile radio communication technologies, the details of which differ greatly. The R&S SMW supports the 3GPP FDD standard developed by the 3GPP ("3rd Generation Partnership Project") standardization committee.

The R&S SMW generates the 3GPP FDD signals in a combination of realtime mode (enhanced channels) and arbitrary waveform mode. Channel coding and simulation of bit and block errors can be activated for the enhanced channels of Release 99 and for H-Sets 1-5 generated in realtime. Channel coding can also be activated for HSDPA/ HSPA+ H-Sets and all HSUPA/HSPA+ FRC channels which are generated in arbitrary wave mode. Data lists can also be used for the data and TPC fields. The enhanced state of realtime channels can be switched off to generate specific test scenarios. In arbitrary waveform mode, the signal is first calculated and then output.

The R&S SMW simulates 3GPP FDD at the physical channel level and also at the transport layer level for all channels for which channel coding can be activated.

3GPP FDD/HSDPA/HSUPA/HSPA+ key features

- Support of all physical channels of 3GPP FDD, HSDPA, HSUPA and HSPA+
- HSDPA H-Sets 1 to 12 with channel coding; user-definable H-Set configuration
- HSUPA fixed reference channels with channel coding and HARQ feedback simulation
- Realtime generation of P-CCPCH and up to three DPCHs in downlink
- One UE in realtime in uplink, up to 128 additional mobile stations via ARB
- External dynamic power control of a code channel possible
- Support of UL-DTX, DC-HSDPA, 4C-HSDPA and 8C-HSDPA

Functional overview of option R&S SMW-K42

The following list gives an overview of the functions provided by the option R&S SMW-K42 for generating a 3GPP FDD signal:

- Configuration of up to 4 base stations and 4 user equipment.
- · Combination of realtime mode (enhanced channels) and arbitrary waveform mode
- All special channels and up to 512 channels on the downlink, except HSDPA, HSUPA and HSPA+
- Various test models and pre-defined settings for the uplink and the downlink
- Modulation 16QAM and 64QAM (downlink) for configuring high-speed channels in continuous mode (test model 5&6, HSDPA)
- Clipping for reducing the crest factor
- Misuse TPC" parameter for varying the original normal transmit power over time

• Simulation of up to 128 additional user equipment

The following functions are provided specifically for the receiver test:

- Realtime generation of up to 4 code channels with the option of using data lists for the data and TPC fields
- Channel coding of the reference measurement channels, AMR and BCH in realtime
- Feeding through of bit errors (to test a BER tester) and block errors (to test a BLER tester)
- Simulation of orthogonal channel noise (OCNS in accordance with TS 25.101)
- Presettings in accordance with 3GPP specifications
- HSDPA Downlink in continuous mode (test model 5&6 for TX tests)

Functional overview of the extension R&S SMW-K83

Enhanced MS/BS tests incl. HSDPA extends the 3GPP FDD signal generation with simulation of high speed channels in the downlink (HS-SCCH, HS-PDSCH) and the uplink (HS-DPCCH) and with dynamic power control in real time. HSDPA (high speed downlink packet access) mode enhances the 3GPP FDD standard by data channels with high data rates especially for multi media applications.

The following functions are provided for enhanced BS/MS tests including HSDPA:

- HSDPA uplink
- HSDPA downlink (packet mode and H-Set mode without CPC, 64QAM and MIMO)
- Dynamic Power Control
- Predefined and user-definable H-Sets
- Assistance in the setting of the appropriate sequence length for arbitrary waveform mode

HSUPA extends the 3GPP FDD signal generation with full HSUPA (high speed uplink packet access) support. Option K59 3GPP FDD HSPA+ extends the HSDPA and/or HSUPA signal generation with HSPA+ features in the downlink and uplink

The following functions are provided for HSUPA:

- HSUPA Downlink (RX measurements on 3GPP FDD UEs with correct timing)
- HSUPA Uplink (RX measurements on 3GPP FDD Node BS supporting HSUPA)
- HSUPA HARQ Feedback support

The following functions are provided for HSPA+:

- Downlink 64QAM with channel coding
- Uplink 16QAM (4PAM)
- Downlink MIMO
- Uplink ACK/PCI/CQI feedback for downlink MIMO and/or Dual Cell HSDPA
- CPC in downlink (HS-SCCH less operation, Enhanced F-DPCH) and uplink (UL-DTX, Uplink DPCCH slot format 4)
- Support for the generation of 3i OCNS and for randomly varying modulation and the number of HS-PDSCH channels in H-Set over time (type 3i enhanced performance requirements tests).

This user manual contains a description of the functionality that the application provides, including remote control operation.

All functions not discussed in this manual are the same as in the base unit and are described in the R&S SMW user manual. The latest version is available at the R&S SMW product page >"Downloads" > "Manuals".

Installation

You can find detailed installation instructions in the delivery of the option or in the R&S SMW Service Manual.

2.1 Accessing the 3GPP FDD Dialog

To open the dialog with 3GPP FDD settings

▶ In the block diagram of the R&S SMW, select "Baseband > 3GPP FDD".

A dialog box opens that display the provided general settings.

The signal generation is not started immediately. To start signal generation with the default settings, select "State > On".

2.2 Scope

Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, this includes:

- Managing settings and data lists, like storing and loading settings, creating and accessing data lists, or accessing files in a particular directory.
- Information on regular trigger, marker and clock signals, and filter settings, if appropriate.
- General instrument configuration, such as checking the system configuration, configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S SMW user manual.

3 About the 3GPP FDD Options

Some background knowledge on basic terms and principles used in the 3GPP FDD modulation system is provided here for better understanding of the required configuration settings.

The following table gives an overview of parameters of the modulation system 3GPP FDD.

Parameter	Value
Chip rate	3.84 Mcps
Channel types	Downlink: Primary Common Pilot Channel (P-CPICH) Secondary Common Pilot Channel (S-CPICH) Primary Sync Channel (P-SCH) Secondary Sync Channel (S-SCH) Primary Common Control Phys. Channel (P-CCPCH) Secondary Common Control Phys. Channel (S-CCPCH) Page Indication Channel (PICH) Acquisition Indication Channel (AICH) Access Preamble Acquisition Indication Channel (AP-AICH) Collision Detection Acquisition Indication Channel (CD-AICH) Phys. Downlink Shared Channel (PDSCH) Dedicated Physical Control Channel (DL-DPCCH) Dedicated Physical Control Channel (HS-SCCH) High Speed Shared Control Channel (HS-SCCH) High Speed Physical Downlink Shared Channel (HS-PDSCH), Modulation QPSK, 16 QAM or 64QAM HSUPA channels (E-AGCH, E-RGCH, E-HICH, F-DPCH) Uplink: Phys. Common Packet Channel (PCPCH) Dedicated Physical Control Channel (DPCCH) Dedicated Physical Control Channel (DPCCH) High Speed Dedicated Physical Control Channel (DPCCH) Dedicated Physical Control Channel (DPCCH) E-DCH Dedicated Physical Control Channel (E-DPCCH) E-DCH dedicated Physical Control Channel (E-DPCCH)
Symbol rates	7.5 ksps, 15 ksps, 30 ksps to 960 ksps depending on the channel type (downlink)15 ksps, 30 ksps, 60 ksps to 1920 ksps depending on the channel type (uplink)
Channel count	In downlink 4 base stations each with up to 128 DPCHs and 11 special channels. In uplink 4 user equipment either with PRACH or PCPCH or a combination of DPCCH, up to 6 DPDCH, HS-DPCCH, E-DPCCH and up to 4 E-DPDCH chan- nels.
Frame structure	Timeslot: 0.667 ms, Subframe: 3 timeslots = 2 ms Radio frame: 15 timeslots = 10 ms The frame structure in symbols depends on the symbol rate.

Table 3-1: Parameters of the modulation system

Parameter	Value
Scrambling code	Downlink: 18 bit M sequence Uplink: 25 bit M sequence in long mode and 8 bit M sequence in short mode
Channelization code for most of the channel types	"Orthogonal Variable Spreading Factor Code (OVSF)" square matrix of dimension chip rate/symbol rate

3.1 Modulation System 3GPP FDD

The following block diagram shows the components of the 3GPP FDD transmission system.

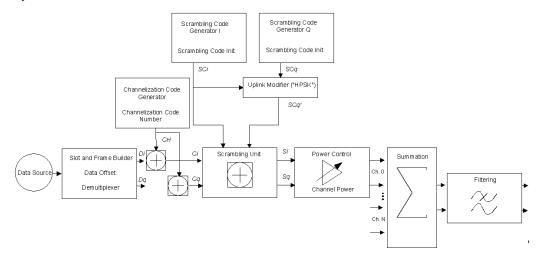


Figure 3-1: Components of the 3GPP FDD transmission system

3.1.1 Scrambling Code Generator

The scrambling code generator (previously called long code generator) is used to scramble the chip sequence as a function of the transmitter.

Depending on the link direction and mode (long or short), the structure and initialization regulation of the generator are different.

3.1.1.1 Downlink Scrambling Code Generator

This generator consists of a pair of shift registers from which the binary sequences for inphase and orthogonal component of the scrambling code are determined. The Figure 3-2 shows that the I component is produced as EXOR operation of the LSB outputs, whereas the register contents are first masked and read out for the Q component and then EXORed.

Modulation System 3GPP FDD

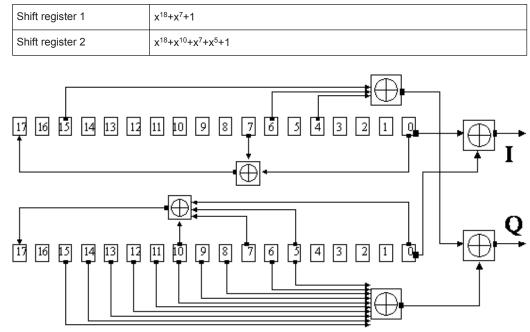


Table 3-2: Generator polynomials of the downlink scrambling code generators

Figure 3-2: Structure of downlink scrambling code generator

The shift registers are initialized by loading shift register 1 with "0...01" and shift register 2 completely with "1". In addition, shift register 1 is wound forward by n cycles, n being the scrambling code number or Scrambling Code (SC) for short.

After a cycle time of one radio frame the generators are reset, i.e. the above initialization is carried out again.

3.1.1.2 Uplink Scrambling Code Generator

In the uplink, a differentiation is made between two SC modes. The long SC, on the one hand, can be used for all types of channel. The short SC, on the other hand, can be used as an alternative to the long SC for all channels except PRACH and PCPCH.

Uplink long scrambling code

Principally, the code generator of the long SC in the uplink is of the same structure as the SC in the downlink. However, the generator polynomials of the shift registers and the type of initialization are different.

Table 3-3: Generator polynomials of the uplink long scrambling code generator

Shift register 1	x ²⁵ +x ³ +1
Shift register 2	x ²⁵ +x ³ +x ² +x+1

The shift registers are initialized by allocating 1 to shift register 1 bit number 24 and the binary form of the scrambling code number n to bits 23 to 0. Shift register 2 is completely loaded with "1".

The read-out positions for the Q component are defined such that they correspond to an IQ offset of 16.777.232 cycles.

After a cycle time of one radio frame the generators are reset, i.e. the above initialization is carried out again.

Uplink short scrambling code

The code generator of the short SC in the uplink consists of a total of 3 coupled shift registers.

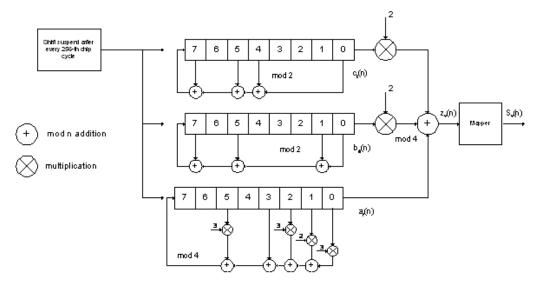


Figure 3-3: Structure of uplink short scrambling code generator

Shift register 1 (binary)	x ⁸ +x ⁷ +x ⁵ +x ⁴ +1
Shift register 2 (binary)	x ⁸ +x ⁷ +x ⁵ +x+1
Shift register 3 (quaternary)	x ⁸ +x ⁵ +3x ³ +x ² +2x+1

The output sequences of the two binary shift registers are weighted with factor 2 and added to the output sequence of the quaternary shift register (Modulo 4 addition). The resulting quaternary output sequence is mapped into the binary complex level by the mapper block.

For initialization of the three 8-bit shift registers (in a modified way) the binary form of the 24-bit short SC number n is used, for details see 3GPP TS 25 213, Spreading and Modulation.

Table 3-5: Mapping of the quaternary output sequence into the binary IQ level

zv(n)	Sv(n)
0	+1 + j1
1	-1 + j1

zv(n)	Sv(n)
2	-1 - j1
3	+1 - j1

Preamble scrambling code generator

When generating the preambles of the PRACH and PCPCH a special SC is used. It is based on the Long SC described under a), however only the I component is taken and subsequently a pointer ($e^{j(Pl/4 + Pl/4 + k)}$, k=0 to 4095) modulated upon it.

Modification of the long and short scrambling code output sequence

The scrambling code sequence of the Q component is modified as standard to reduce the crest factor of the signal. Zero-crossings can thus be avoided for every second cycle. (This method is often called "HPSK").

For details see 3GPP TS 25 213, Spreading and Modulation. The R&S SMW makes use of a decimation factor of 2.

3.1.2 Scrambling Unit

In the scrambling unit, the output of the scrambling code generator is linked with spread symbols. If the input signal and the scrambling code signal are interpreted as complex signal (C_i , C_q , SC_i , $SC_q' \in \{-1, +1\}$), the output signal is a complex multiplication of the two signals:

 $S_i + j S_q = (C_i + j C_q) * (SC_i + j SC_q')$

and the following equations apply

 $S_i = C_i SC_i - C_q SC_q'$

 $S_q = C_i S C_q' + C_q S C_i$

The signal thus obtained can be interpreted as a QPSK signal with the following constellation diagram:

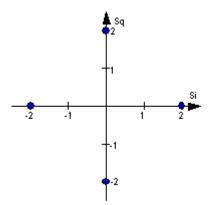


Figure 3-4: Constellation diagram of a channel with 0 dB power

(1)

There are auxiliary conditions for some types of channels that may result in different constellation diagrams. If, for instance, symbols of the SCH are coded, a BPSK constellation is obtained without the scrambling unit.

Furthermore, with HSDPA and HSPA+, the higher order modulations 4PAM, 16QAM and 64QAM were introduced.

3.1.3 Channelization Code Generator

The channelization code generator cyclically outputs a channel-specific bit pattern. The length of the cycle corresponds to the period of the source symbol to be spread, i.e. the number of bits corresponds to the spread factor. The spreading sequence for the I and Q branch is identical (real value). Spreading is a simple EXOR operation.

Two different channelization code generators are used depending on the type of channel:

Channelization code generator for all channels except SCH

Due to this channelization code the channel separation takes place in the sum signal. The channelization code number is the line of an orthogonal spreading matrix which is generated according to an iterative scheme ("OVSF").

Channelization code generator SCH

This generator replaces the one described above if the synchronization code symbol of the SCH channels is spread.

The spreading matrix is replaced by a method that forms the spreading sequence from a Hadamard sequence and a statistical sequence. For details see 3GPP TS 25 213.

3.1.4 Data Source

The data and TPC fields of the enhanced channels (realtime channels) can be filled from data lists containing data defined by the user. This allows user information from the physical layer or from higher layers such as the transport layer to be introduced into the signal generation process.

The choice of data sources is crucially important for the signal characteristics. The constellation diagram and the crest factor in particular are modeled to a great extent by a suitable choice of data.

3.1.5 Slot and Frame Builder

The bits from the data source are first entered into a frame structure. The frames are made up of three hierarchical levels:

Hierarchy	Length in ms	Remarks
Timeslot	0,667	
Subframe	2 ms	One subframe consists of 3 timeslots.
Radio frame	10	After a radio frame, pilot symbols are repeated. One radio frame consists of 15 timeslots.
		A frame is also the length of a scrambling code cycle. Frames are the basic unit.
		The sequence length is stated in radio frames.

The configuration of the timeslots depends on the channel type and symbol rate. The following components are distinguished:

Pilot sequence

The pilot sequence characterizes the timeslot position within the radio frame and also depends on the symbol rate, transmit diversity and the pilot length parameter. Channel types DPCH, S-CCPCH, DL-DPCCH, DPCCH, PRACH and PCPCH have a pilot sequence.

The pilot sequence cannot be changed by the user.

• Synchronization code symbol

The synchronization code symbol is the only symbol of the SCH.

• TPC symbol

This symbol is used to control the transmit power. It is used in DPCH, DL-DPCCH and DPCCH.

A bit pattern for the sequence of TPC symbols can be indicated as a channel-specific pattern.

• Data symbols

These symbols carry the user information and are fed from the data source. They are used in DPCH, P-CCPCH, S-CCPCH, PDSCH, E-AGCH, E-RGCH, E-HICH, DPDCH, PRACH, PCPCH, HS-PDSCH and E-DPDCH.

• Signature

The signature is used in PRACH and PCPCH. 16 fixed bit patterns are defined of which the user may select one.

TFCI

The "Transport Format Combination Indicator" is used in DPCH/DPCCH if the state is set to On. In this case, a code sequence with the length of 30 is defined using this value and distributed among 15 subsequent timeslots. In PRACH and PCPCH, the TFCI field is provided as standard.

• FBI

Feedback indication bits are only used in DPCCH and PCPCH.

3.1.6 Timing Offset

The symbol stream can be shifted in time relative to the other channels. For this purpose a timing offset can be entered into the channel table, stating the range of shifting in multiples of 256 chips. Since the generator does not generate infinite symbol streams like a real-time system, this offset is implemented as a rotation.

Example:

DPCH 30 ksps, 1 timeslot, timing offset = 2;

2 x 256 chips = 512 chip offset;

4 data symbols shifting at a symbol rate of 30 ksps (1 symbol corresponds to 3.84 Mcps / 30 ksps = 128 chips).

previously:

11	11	11	11	00	01	10	11	00	10	01	11	11	01	00	01	10	11	01	00
aftenwarde:																			

afterwards:

10	11	01	00	11	11	11	11	00	01	10	11	00	10	01	11	11	01	00	01

The use of the timing offset usually causes a reduction of the crest factor of the total signal, since it is not always the same spreading chips (channelization chips) CH and scramble chips SC_i/SC_g that are applied to the pilot sequences of the channels.

3.1.7 Demultiplexer

In the downlink, the symbol stream is divided into two bit streams Di and Dq prior to processing in the spreading unit. For example, if QPSK modulation is used for a channel, the symbol stream is divided by allocating bits 1, 3, 5, to 2n-1 to the in-phase bit stream Di, and bits 2, 4, 6, 2n to the quadrature bit stream Dq.

For the above example with timing offset:

(left-hand bit is always the first one in the time sequence)

In the uplink, independent data are used for the two paths.

PRACH/PCPCH:	Preamble : signature parallel to I and Q
	Message part : data to I, pilot, TPC and TFCI to Q
DPCCH/E-DPCCH:	all bits to I, Q always unused
DPDCH/HS-DPCCH/E- DPDCH:	all bits are always to I or Q (dependent on channel number), the other path is unused.

3.1.8 Power Control

After spreading and scrambling, a channel-specific power factor p is applied to the signal. A value of -6 dB therefore results in half the level (or 1/4 power) and the following diagram (DPCH):

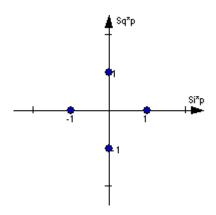


Figure 3-5: Constellation diagram of a channel with -6 dB power

3.1.9 Summation and Filtering

After application of the channel power, the components of the individual channels are summed up.

The constellation diagram of the sum signal is obtained by superposition of the diagrams of the individual channels. If the signal consists of two channels with a power of -6 dB and -12 dB and each channel contains independent source data (DPCH), the following constellation diagram is obtained:

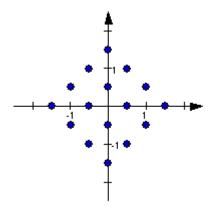


Figure 3-6: Constellation diagram of a 3GPP W-CDMA signal with two DPCH channels

3.1.10 Multicode

3GPP FDD supports multicode transmission for downlink-dedicated physical channels (DPCH).

This form of transmission is used for channels intended for the same receiver, i.e. those receivers that belong to a radio link. The first channel of this group is used as a master channel.

Shared parts (pilot, TPC and TCFI) are spread for all channels using the spreading code of the master channel.

Instead of changing the spreading code within a slot several times, the master code rather than the shared parts can be sent at higher power. The other channels then have to be blanked out correspondingly.

3.1.11 Orthogonal Channel Noise (OCNS)

With Orthogonal Channel Noise, a practical downlink signal is generated to test the maximum input levels of user equipment in accordance with standard specifications. This simulates the data and control signals of the other orthogonal channels in the downlink. 3GPP TS 25.101 contains a precise definition of the required appearance of the OCNS signal.

Four different OCNS scenarios are defined in the standard; one "standard" scenario, two scenarios for HSDPA test cases and one scenario for type 3i enhanced performance requirements tests according to 3GPP TS34.121-1 ("other user's channels").

When activating OCNS and depending on the selected OCNS mode, different channel groups with different presetting are assigned as in the following tables. These channels cannot be edited in the channel table.

3.1.11.1 Standard, HSDPA and HSDPA2 modes

For the "Standard", "HSDPA" and "HSDPA2" modes, the OCNS channels are all normal DPCHs. The symbol rate is set at 30 kps and the pilot length to 8 bits.

The powers of the OCNS channel outputs are relative. In the R&S SMW, the power of the OCNS component is automatically set so that OCNS channels supplement the remaining channels in base station 1 to make a total power of 0 dB (linear 1).

It is not possible to adapt the OCNS power if the linear power of the remaining channels is >1, this will produce an error message. The OCNS channels are then given the maximum power (all -80 dB).

The "Total Power" display is updated after automatic calculation of the output; it is not possible to use "Adjust Total Power" to make the setting.

Chan. code	Timing offset (x256Tchip)	Level setting (dB)	Channel type	Symbol rate	Pilot length
2	86	-1	DPCH	30 ksps	8 bit
11	134	-3	DPCH	30 ksps	8 bit
17	52	-3	DPCH	30 ksps	8 bit
23	45	-5	DPCH	30 ksps	8 bit
31	143	-2	DPCH	30 ksps	8 bit
38	112	-4	DPCH	30 ksps	8 bit
47	59	-8	DPCH	30 ksps	8 bit
55	23	-7	DPCH	30 ksps	8 bit

Table 3-7: Defined settings for the OCNS signal in base station 1 in Standard mode

Modulation System 3GPP FDD

Chan. code	Timing offset (x256Tchip)	Level setting (dB)	Channel type	Symbol rate	Pilot length
62	1	-4	DPCH	30 ksps	8 bit
69	88	-6	DPCH	30 ksps	8 bit
78	30	-5	DPCH	30 ksps	8 bit
85	18	-9	DPCH	30 ksps	8 bit
94	30	-10	DPCH	30 ksps	8 bit
125	61	-8	DPCH	30 ksps	8 bit
113	128	-6	DPCH	30 ksps	8 bit
119	143	0	DPCH	30 ksps	8 bit

Table 3-8: Defined settings for the OCNS signal in base station 1 in HSDPA mode

Channelization code at SF=128	Relative Level setting (dB)	Channel type	Symbol rate	Pilot length
122	0	DPCH	30 ksps	8 bit
123	-2	DPCH	30 ksps	8 bit
124	-2	DPCH	30 ksps	8 bit
125	-4	DPCH	30 ksps	8 bit
126	-1	DPCH	30 ksps	8 bit
127	-3	DPCH	30 ksps	8 bit

Table 3-9: Defined settings for the OCNS signal in base station 1 in HSDPA2 mode

Channelization code at SF=128	Relative Level setting (dB)	Channel type	Symbol rate	Pilot length
4	0	DPCH	30 ksps	8 bit
5	-2	DPCH	30 ksps	8 bit
6	-4	DPCH	30 ksps	8 bit
7	-1	DPCH	30 ksps	8 bit

3.1.11.2 3i OCNS mode

(requires option R&S SMW-K83)

In the "3i" OCNS mode, 16 DPCH channels are inserted in the BS 1 channel according to 3GPP TS34.121-1, chapter E.5E.

According to 3GPP TS34.121-1, table E.5E.1.3, the channelization code of each of these channels changes randomly on a symbol-by-symbol basis between two possible values.

Modulation System 3GPP FDD

23	DPCH (OCNS)	10	30	2	-1.70	PN 9
24				108		
25	DPCH (OCNS)	10	30	3	-2.70	PN 9
26				103		
27	DPCH (OCNS)	10	30	5	-3.50	PN 9
28				109		

The power control sequence modeling according to 3GPP TS34.121-1, chapter E.5E.3 is applied to these channels; the power relationship between these channels is according to 3GPP TS34.121-1, table E.5E.1.3 only during the very first slot, and can deviate in the subsequent slots up to a certain range, but the total power of these channels is maintained constant (by normalization).

If the "3i" OCNS mode is activated (and the "3GPP FDD > State > On"), the OCNS channels are automatically leveled in order to have a total power of 0 dB for all channels of BS 1.

Table 3-10: Defined settings for the OCNS signal in base station 1 in 3i mode							

Slot format	Symbol Rate, kbps	First Ch. Code of the channel	Second Ch. Code of the channel	Relative Power, dB
				(prior to the 0 dB adjustment)
10	30	2	108	-1.7
10	30	3	103	-2.7
10	30	5	109	-3.5
10	30	6	118	-0.8
10	30	90	4	-6.2
10	30	94	123	-4.6
10	30	96	111	-2.3
10	30	98	106	-4.1
10	30	99	100	-3.1
10	30	101	113	-5.1
12	60	52	44	0.0
10	30	110	124	-4.6
10	30	114	115	-4.8
10	30	116	126	-4.8
12	60	60	46	-1.1
10	30	125	95	-4.1

Refer to Chapter 4.13.9, "Randomly Varying Modulation And Number Of Codes (Type 3i) Settings", on page 118 for description of the further settings required for the 3i Enhanced Performance Requirements tests according to 3GPP TS34.121-1.

3.1.12 HARQ Feedback

The HARQ Feedback functionality extends the basic 3GPP FDD option in order to meet the requirements defined in 3GPP TS 25.141, chapter 8.12 and 8.13.

This allows the user to dynamically control the transmission of the HSUPA fixed reference channels (FRC 1-7), the HSPA+ fixed reference channel (FPC 8) and the user defined fixed reference channels. An ACK from the base station leads to the transmission of a new packet while a NACK forces the instrument to retransmit the packet with a new channel coding configuration (i.e. new redundancy version RV) of the concerned HARQ process.

3.1.12.1 Limitations

Although an arbitrary data source can be selected, the same user data is used for all HARQ processes and for all retransmissions.

Example:

If FRC4 is configured and the data source is set to PN9, then the first 5076 bits of the PN9 are used as input for all four HARQ processes, regardless of which retransmission is performed. Note that the bitstream after channel coding of course is different for different retransmissions due to different redundancy versions.

Furthermore, "DTX-Mode" and "Bit-Error-Insertion/Block-Error-Insertion" are not available in this mode.

3.1.12.2 Setup

If an instrument with fading simulation is available, no more test equipment is needed in order to fulfill the test setup described in 3GPP TS 25.141, Annex B.3.4.

As the instrument has no RF input available, the HARQ feedback from the base station is expected as a TTL signal. The instrument provides two input connectors for this signal, the LEVATT connector on the external AUX I/O BNC adapter board R&S SMx-Z5 and the USER 1 connector on the instrument. Use the parameter Connector (HARQ) to enable the currently used in each baseband.

A high level (TTL) is interpreted as an ACK, while a low level corresponds to a NACK. Use the parameter ACK Definition (HARQ) to re-defined it.

3.1.12.3 Timing

In general, the ACK/NACK feedback from the base station should be available at the selected instruments connector (LEVATT or the USER 1) with the same timing the E-

HICH is transmitted. The instrument will read out this port at time T_{SMx} after the start of the HARQ process the feedback is related to (see Figure 3-7). The user is able to adjust this time via the parameter Additional User Delay parameter. The signal should be constant on this instrument's input for 0.5 ms before and after the defined point in time.

As it probably takes some time for the base station to be synchronized to the signal transmitted from the instrument, the ACK/NACK feedback should be NACK during this period, in order to force the instrument to retransmit the packets, until the first packet is read out correctly from the base station.

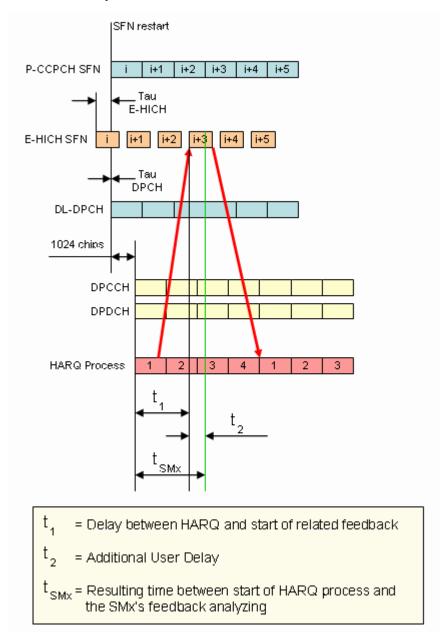


Figure 3-7: Timing diagram for TTI 10ms, tau_dpch = 0, tau_E-HICH = -7slots

3.1.13 HS-SCCH less operation

HS-SCCH less operation is a special HSDPA mode of operation which reduces the HS-SCCH overhead and reduces UE battery consumption. It changes the conventional structure of HSDPA data reception. In HSDPA as defined from 3GPP release 5 onwards, UE is supposed to read continuously HS-SCCH where data allocations are being signaled. The UE is being addressed via a UE specific identity (16 bit H-RNTI / HSDPA Radio Network Temporary Identifier) on HS-SCCH. As soon as the UE detects relevant control information on HS-SCCH it switches to the associated HS-PDSCH resources and receives the data packet.

This scheme is fundamentally changed in HS-SCCH less operation and HS-SCCH less operation is optimized for services with relatively small packets, e.g. VoIP.

In HS-SCCH less operation mode, the base station can decide for each packet again whether to apply HS-SCCH less operation or not, i.e. conventional operation is always possible.

The first transmission of a data packet on HS-DSCH is done without an associated HS-SCCH. The first transmission always uses QPSK and redundancy version Xrv = 0. Only four pre-defined transport formats can be used so the UE can blindly detect the correct format. The four possible transport formats are configured by higher layers. Only predefined channelization codes can be used for this operation mode and are configured per UE by higher layers: the parameter HS-PDSCH code index provides the index of the first HS-PDSCH code to use. For each of the transport formats, it is configured whether one or two channelization codes are required.

In order to allow detection of the packets on HS-DSCH, the HS-DSCH CRC (Cyclic Redundancy Check) becomes UE specific based on the 16 bit HRNTI. This is called CRC attachment method 2 (CRC attachment method 1 is conventional as of 3GPP release 5).

In case of successful reception of the packet, the UE will send an ACK on HS-DPCCH. If the packet was not received correctly, the UE will send nothing.

If the packet is not received in the initial transmission, the base station may retransmit it. The number of retransmissions is limited to two in HS-SCCH less operation.

In contrast to the initial transmission, the retransmissions are using HS-SCCH signaling. However, the coding of the HS-SCCH deviates from release 5, since the bits on HS-SCCH are re-interpreted. This is called HS-SCCH type 2. The conventional HS-SCCH as of 3GPP release 5 is called HS-SCCH type 1.

3.1.13.1 HS-SCCH Type 2

The table below gives a comparison of the HS-SCCH Type 1 (normal operation) and HS-SCCH Type 2 (Less Operation) formats.

Table 3-11: Comparison of HS-SCCH Type 1 and Type 2

HS-SCCH Type 1 (normal operation)	HS-SCCH Type 2 (less operation)
Channelization code set information (7 bits)	Channelization code set information (7 bits)
Modulation scheme information (1 bit)	Modulation scheme information (1 bit)
Transport block size information (6 bits)	Special Information type (6 bits)
HARQ process information (3 bits)	Special Information (7 bits)
Redundancy and constellation version (3 bits)	UE identity (16 bits)
New data indicator (1 bit)	
UE identity (16 bits)	

The Special Information type on HS-SCCH type 2 must be set to 111110 to indicate HS-SCCH less operation. The 7 bits Special information then contains:

- 2 bit transport block size information (one of the four possible transport block sizes as configured by higher layers)
- 3 bit pointer to the previous transmission of the same transport block (to allow soft combining with the initial transmission)
- 1 bit indicator for the second or third transmission
- 1 bit reserved.

QPSK is also used for the retransmissions. The redundancy version Xrv for the second and third transmissions shall be equal to 3 and 4, respectively.

For the retransmissions, also HS-DSCH CRC attachment method 2 is used.

ACK or NACK are reported by the UE for the retransmitted packets.

3.1.13.2 HS-SCCH Type 2 Fixed Reference Channel: H-Set 7

In order to support HS-SCCH Type 2 (Less Operation) testing, a fixed reference channel has been introduced. H-Set 7 is specified as reference test channel for HSDPA test cases.

The H-Set 7 consists of one HS-PDSCH and its parameterization and coding chain is based on 1 code with QPSK modulation and one HARQ process.

3.1.14 Higher Order Modulation

3.1.14.1 64QAM in downlink

With the possibility to use 64QAM in downlink, HSPA+ can achieve downlink data rates of 21 Mbps. This theoretical peak data rate (physical channel bit rate) with 64QAM is calculated as follow:

Peak data rate (64QAM) = 15 [codes] * 2880 bits/ 2 ms [subframe] = 21.6 MBps

3.1.14.2 64QAM Fixed Reference Channel: H-Set 8

In order to support 64QAM testing, a fixed reference channel has been introduced. H-Set 8 is specified as reference test channel for HSPA+ test cases.

The H-Set 8 parameterization and coding chain is based on 15 codes with 64QAM modulation. Six Hybrid ARQ processes are used, and HS-DSCH is continuously transmitted.

3.1.14.3 16QAM in uplink

With the possibility to use 16QAM on E-DCH (Enhanced Dedicated Channel) in uplink, HSPA+ can achieve uplink peak data rates of 11.5 Mbps. A new uplink UE category 7 has been introduced which supports 16QAM in addition to BSPK.

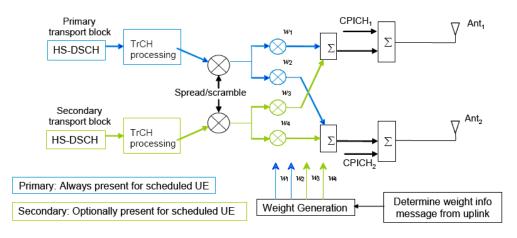
Uplink transmission in HSPA+ is based on IQ multiplexing of E-DPDCH (Enhanced Dedicated Physical Data Channel) physical channels as in HSUPA of 3GPP release 6. In fact, the 16QAM constellation is made up of two orthogonal 4PAM (pulse amplitude modulation) constellations. In case of 4PAM modulation, a set of two consecutive binary symbols n_k , n_{k+1} is converted to a real valued sequence following the mapping described in the table below.

Table 3-12: Mapping of E-DPDCH with 4PAM modulation

n _k , n _{k+1}	00	01	10	11
Mapped real value	0.4472	1.3416	-0.4477	-1.3416

This results in the following symbol mapping:

An E-DPDCH may use BPSK or 4PAM modulation symbols.


3.1.14.4 16QAM Fixed Reference Channel: FRC 8

To support 16QAM (4PAM) testing in the uplink, a E-DPDCH fixed reference channel (FRC 8) has been introduced.

The FRC 8 parameterization and channel coding is based on four Physical Channel Codes (2xSF2 and 2xSF4) with overall symbol rate of 2x960 + 2x1920 ksps, 4PAM modulation and E-DCH TTI of 2 ms. Eight Hybrid ARQ processes are used.

3.1.15 MIMO in HSPA+

HSPA+ uses full MIMO approach including spatial multiplexing. The approach is called D-TxAA (Double Transmit Antenna Array). It is only applicable for the High Speed Downlink Shared Channel, the HS-DSCH.

The figure below shows the basic principle of the 2x2 approach. The figure is taken from 3GPP TS 25.214.

Figure 3-8: MIMO for HSPA+

With D-TxAA, two independent data streams (transport blocks) can be transmitted simultaneously over the radio channel over the same WCDMA channelization codes. Each transport block is processed and channel coded separately. After spreading and scrambling, **precoding** based on weight factors is applied to optimize the signal for transmission over the mobile radio channel.

Four precoding weights w1- w4 are available. The first stream is multiplied with w1 and w2, the second stream is multiplied with w3 and w4. The weights can take the following values:

$$w_{3} = w_{1} = 1/\sqrt{2},$$

$$w_{4} = -w_{2},$$

$$w_{2} \in \left\{\frac{1+j}{2}, \frac{1-j}{2}, \frac{-1+j}{2}, \frac{-1-j}{2}\right\}$$

Precoding weight w1 is always fixed, and only w2 can be selected by the base station. Weights w3 and w4 are automatically derived from w1 and w2, because they have to be orthogonal.

3.1.15.1 D-TxAA Feedback signaling: PCI and CQI

D-TxAA requires a **feedback signaling** from the UE to assist the base station in taking the right decision in terms of modulation and coding scheme and precoding weight selection. The UE has to determine the preferred primary precoding vector for transport block 1 consisting of w1 and w2. Since w1 is fixed, the feedback message only consists of a proposed value for w2. This feedback is called **precoding control information (PCI)**. The UE also recommends whether one or two streams can be supported in the current channel situation. In case dual stream transmission is possible, the secondary precoding vector consisting of weights w3 and w4 is inferred in the base station, because it has to be orthogonal to the first precoding vector with w1 and w2.

Thus, the UE does not have to report it explicitly. The UE also indicates the optimum modulation and coding scheme for each stream. This report is called **channel quality indicator (CQI)**.

Based on the composite PCI/CQI reports, the base station scheduler decides whether to schedule one or two data streams to the UE and what packet sizes (transport block sizes) and modulation schemes to use for each stream.

3.1.15.2 MIMO downlink control channel support

In order to support MIMO operation, changes to the HSDPA downlink control channel have become necessary, i.e. the HS-SCCH.

There is a new **HS-SCCH Type 3** for MIMO operation defined. The table below gives a comparison of the HS-SCCH Type 1 and Type 3 formats.

HS-SCCH Type 1	HS-SCCH Type 3	МІМО				
(normal operation)	One transport block	Two transports blocks				
Channelization code set information (7 bits)	Channelization code set information (7 bits)	Channelization code set information (7 bits) Modulation scheme and number of transport				
Modulation scheme informa- tion (1 bit) Transport block size informa-	Modulation scheme and number of transport blocks information (3 bits)	blocks information (3 bits) Precoding weight information for primary transport block (2 bits)				
tion (6 bits) HARQ process information	Precoding weight informa- tion (2 bits)	Transport block size information for primar transport block (6 bits)				
(3 bits) Redundancy and constella-	Transport block size infor- mation(6 bits)	Transport block size information for secon- dary transport block (6 bits)				
tion version(3 bits)	HARQ process information (4 bits)	HARQ process information (4 bits)				
New data indicator (1 bit) UE identity (16 bits)	Redundancy and constella- tion version (2 bits)	Redundancy and constellation version for primary transport block (2 bits)				
	UE identity (16 bits)	Redundancy and constellation version for secondary transport block (2 bits)				
		UE identity (16 bits)				

The "Precoding weight info for the primary transport block" contains the information on weight factor w2 as described above. Weight factors w1, w3, and w4 are derived accordingly. The number of transport blocks transmitted and the modulation scheme information are jointly coded as shown in Table 3-13.

Table 3-13: Interpretation of	"Modulation scheme and number of trans	port blocks info" sent on HS-
SCCH		

Modulation scheme + number of transport blocks info (3 bits)	Modulation for primary transport block	Modulation for secon- dary transport block	Number of transport blocks
111	16QAM	16QAM	2
110	16QAM	QPSK	2
101	64QAM 64QAM	n/a QPSK	1 2
100	16QAM	n.a.	1

Modulation scheme + number of transport blocks info (3 bits)	Modulation for primary transport block	Modulation for secon- dary transport block	Number of transport blocks
011	QPSK	QPSK	2
010	64QAM	64QAM	2
001	64QAM	16QAM	2
000	QPSK	n.a.	1

3.1.15.3 Redundancy Version

Redundancy versions for the primary transport block and for the secondary transport block are signaled. Four redundancy version values are possible (unlike HSDPA in 3GPP release 5 where eight values for the redundancy version could be signaled).

3.1.15.4 HARQ Processes

Also the signaling of the HARQ processes differs from HSDPA in 3GPP release 5. In 3GPP release 5, up to eight HARQ processes can be signaled. A minimum of six HARQ processes needs to be configured to achieve continuous data transmission. Similarly, in MIMO with dual stream transmission, a minimum of twelve HARQ processes would be needed to achieve continuous data transmission.

Each HARQ process has independent acknowledgements and retransmissions. In theory, HARQ processes on both streams could run completely independently from one another. This would however increase the signaling overhead quite significantly (to 8 bits), since each possible combination of HARQ processes would need to be addressed.

To save signaling overhead, a restriction is introduced: HARQ processes are only signaled for the primary transport block within 4 bits, the HARQ process for the secondary transport block is derived from that according to a fixed rule; according to 3GPP TS 25.212. Thus, there is a one-to-one mapping between the HARQ process used for the primary transport block and the HARQ process used for the secondary transport block. The relation is shown in the table below for the example of 12 HARQ processes configured.

Table 3-14: Combinations of HARQ process numbers for dual stream transmission (12 HARQ processes configured)

HARQ process number on primary stream	0	1	2	3	4	5	6	7	8	9	10	11
HARQ process number on secondary stream	6	7	8	9	10	11	0	1	2	3	4	5

Only an even number of HARQ processes is allowed to be configured with MIMO operation.

3.1.15.5 MIMO uplink control channel support

Also the uplink control channel for HSDPA operation is affected by MIMO, i.e. the HS-DPCCH (High Speed Dedicated Physical Control Channel). In addition to CQI reporting as already defined from 3GPP release 5 onwards, PCI reporting for precoding feedback is introduced. Channel coding is done separately for the composite precoding control indication (PCI) / channel quality indication (CQI) and for HARQ-ACK (acknowledgement or negative acknowledgement information). The figure below shows the principle.

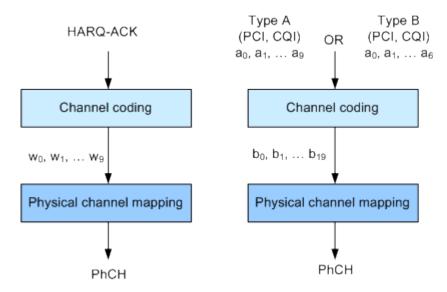


Figure 3-9: Channel coding for HS-DPCCH (MIMO mode)

The 10 bits of the HARQ-ACK messages are interpreted according to 3GPP TS 25.212 (see table below). ACK/NACK information is provided for the primary and for the secondary transport block.

Table 3-15: Interpretation of HARQ-ACK in MIMC	operation (non DC-HSDPA case)
--	-------------------------------

				•				,			
HARQ-ACK messa	HARQ-ACK message to be transmitted		W ₁	W ₂	w ₃	W4	W ₅	w ₆	W7	w ₈	W ₉
HARQ-ACK in response to a single scheduled transport block											
ACK		1	1	1	1	1	1	1	1	1	1
NACK		0	0	0	0	0	0	0	0	0	0
HARQ-ACK in response to two scheduled transport blocks											
Response to primary transport block	Response to secondary transport block										
ACK	ACK	1	0	1	0	1	1	1	1	0	1
ACK	NACK	1	1	0	1	0	1	0	1	1	1
NACK	ACK	0	1	1	1	1	0	1	0	1	1
NACK	NACK	1	0	0	1	0	0	1	0	0	0
	PRE/POS	ST ind	icatio	n							

PRE	0	0	1	0	0	1	0	0	1	0
POST	0	1	0	0	1	0	0	1	0	0

3.1.15.6 CQI Reports: Type A and Type B

In MIMO case, two types of CQI reports shall be supported:

- Type A CQI reports can indicate the supported transport format(s) for the number of transport block(s) that the UE prefers. Single and dual stream transmissions are supported.
- Type B CQI reports are used for single stream transmission according to what has been defined from 3GPP release 5 onwards.

For type A CQI reports, the UE selects the appropriate CQI1 and CQI2 values for each transport block in dual stream transmission, or the appropriate CQIS value in single stream transmission, and then creates the CQI value to report on HS-DPCCH as follows:

$$CQI = \begin{cases} 15^*CQI_1 + CQI_2 + 31 & \text{when } 2 \text{ transport blocks are preferred by theUE} \\ CQIs & \text{when } 1 \text{ transport block is preferred by theUE} \end{cases}$$

For dual stream transmission, new CQI tables are specified in 3GPP TS25.214 for correct interpretation of transport formats based on CQI1 and CQI2.

3.1.15.7 PCI reports

The PCI value to report in the uplink is created in the UE according to the preferred precoding weight w_2 according to the table below.

W2 ^{pref}	$\frac{1+j}{2}$	$\frac{1-j}{2}$	$\frac{-1+j}{2}$	$\frac{-1-j}{2}$
PCI value	0	1	2	3

Table 3-16: Mapping of preferred precoding weight to PCI values

The PCI value shall be transmitted together with the CQI value as a composite PCI/CQI value. The figure below shows how the composite PCI/CQI report is created.

Modulation System 3GPP FDD

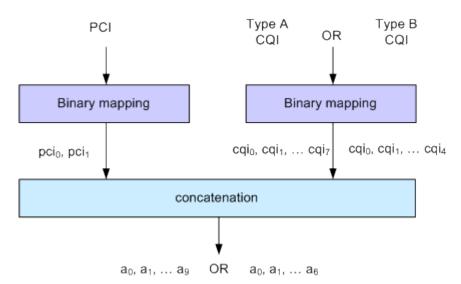
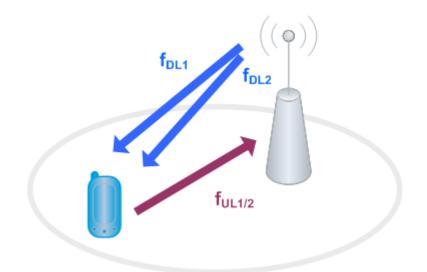


Figure 3-10: Composite PCI/CQI information (MIMO mode)

3.1.15.8 MIMO Fixed Reference Channels: H-Set 9 and H-Set 11

In order to support MIMO testing, two fixed reference channels have been introduced. H-Set 9 and H-Set 11 are specified as reference test channel for HSPA+ test cases.

The H-Set 9 parameterization and coding chain is based on 15 codes with two different modulations, 16QAM and QPSK, for the primary and secondary transport blocks respectively. Six HARQ processes are used, and HS-DSCH is continuously transmitted.


The H-Set 11 parameterization and coding chain is also based on 15 codes and uses two different modulations, six HARQ processes and HS-DSCH is continuously transmitted. The modulation schemes specified for the H-Set 11 are however **64QAM** and **16QAM** for the primary and secondary transport blocks respectively.

3.1.16 Dual Cell HSDPA (DC-HSDPA)

Within 3GPP Release 7 the peak user throughout was significantly enhanced (MIMO, Higher Order Modulation). In order to fulfill the desire for even better and more consistent user experience across the cell the deployment of a second HSDPA carrier creates an opportunity for network resource pooling as a way to enhance the user experience, in particular when the radio conditions are such that existing techniques (e.g. MIMO) can not be used.

In DC-HSDPA operation the UE is configured with secondary serving HS-DSCH cell. With one HS-SCCH in each of the two cells scheduling flexibility to have different transport formats depending on CQI feedback on each carrier is maintained.

Modulation System 3GPP FDD

Figure 3-11: Dual Cell HSDPA Operation

The following restrictions apply in case of DC-HSDPA operation:

- The dual cell transmission only applies to HSDPA physical channels
- The two cells belong to the same Node-B
- In Release 8 it is required that the two cells are on adjacent carriers; from Release 9 onwards the paired cells can operate on two different frequency bands.
- The two cells may use MIMO to serve UEs configured for dual cell operation

3.1.16.1 DC-HSDPA Data Acknowledgement (non MIMO mode)

When the UE is configured to work in DC-HSDPA non MIMO mode, the coding of the HS-DPCCH is performed according to the general coding flow, i.e. parallel coding of the HARQ-ACK and the CQI is performed. The figure below shows the principle.

Modulation System 3GPP FDD

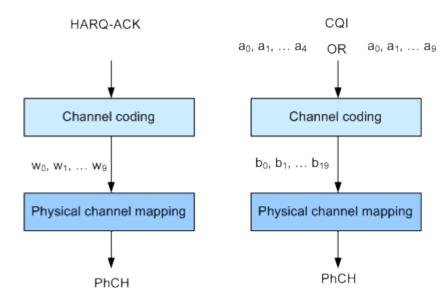


Figure 3-12: Channel coding for HS-DPCCH (non MIMO mode)

The 10 bits of the HARQ-ACK messages are interpreted according to 3GPP TS 25.212 (see the table below). ACK/NACK information is provided for the transport block of the serving and secondary serving HS-DSCH cells.

Table 3-17: Interpretation of HARQ-ACK in DC-HSDPA non MIMO operation

HARQ-ACK message	to be transmitted	w ₀	W ₁	w ₂	w ₃	W4	W ₅	w ₆	W7	w ₈	W ₉
	HARQ-ACK in respons	e to a	single	e scheo	duled t	ransp	ort bloo	ck,			
	detected or	n the s	servin	g HS-C	SCH o	ell					
ACK		1	1	1	1	1	1	1	1	1	1
NACK		0	0	0	0	0	0	0	0	0	0
	HARQ-ACK in respons	e to a	single	e scheo	duled t	ransp	ort bloo	ck,			
	detected on the	secon	dary s	serving	HS-DS	SCH o	ell				
ACK		1	1	1	1	1	0	0	0	0	0
NA	NACK		0	0	0	0	1	1	1	1	1
	HARQ-ACK in respons	e to a	single	e scheo	duled t	ransp	ort bloo	ck,			
dete	ected on each of the ser	ving a	ind se	conda	ry serv	ing H	S-DSC	H cells	i		
Response to trans- port block from setv- ing HS-DSCH cell	Response to trans- port block from sec- ondary serving HS- DSCH cell										
АСК	ACK	1	0	1	0	1	0	1	0	1	0
ACK	NACK	1	1	0	0	1	1	0	0	1	1
NACK	АСК	0	0	1	1	0	0	1	1	0	0
NACK	NACK	0	1	0	1	0	1	0	1	0	1
	PF	RE/PO	ST in	dicatio	n						

PRE	0	0	1	0	0	1	0	0	1	0
POST	0	1	0	0	1	0	0	1	0	0

CQI reports: CQI1 and CQI2

Two individual CQI reports CQI1 and CQI2 are concatenated to form the composite channel quality information. CQI1 corresponds to the serving HS-DSCH cell and CQI2 to the secondary serving cell respectively. The figure below show how the CQI report is constructed.

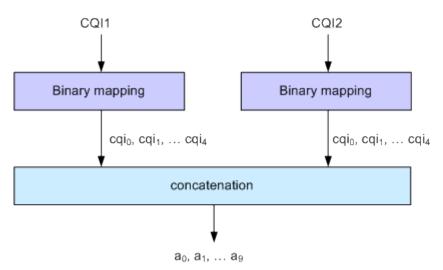


Figure 3-13: Composite CQI information (DC-HSDPA operation, non MIMO mode)

3.1.16.2 DC-HSDPA + MIMO

Channel coding is done separately for the composite PCI/CQI and for HARQ-ACK information.

The principle is shown on figure Figure 3-9.

The composite PCI/CQI report is created as illustrated on figure Figure 3-10.

The HARQ-ACK message is coded to 10 bits according to 3GPP TS 25.212. The standard defines the HARQ-ACK coding for the feedback of the serving and secondary serving HS-DSCH cells for normal and dual stream transmission.

3.1.16.3 Dual Cell HSDPA (DC-HSDPA) Fixed Reference Channel: H-Set 12

In order to support DC-HSDPA testing, a fixed reference channel has been introduced. H-Set 12 is specified as reference test channel for HSDPA test cases.

The H-Set 12 parameterization and coding chain is based on 1 code with QPSK modulation. Six Hybrid ARQ processes are used, and HS-DSCH is continuously transmitted.

3.1.17 HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA

The 3GPP Release 11 extends the dual cell HSDPA (DC-HSDPA) transmission up to 8 cells HSDPA (8C-HSDPA). This extension basically enables the simultaneous scheduling of HSDPA transmission over 4 or 8 cells, one serving and up to three respectively up to seven secondary serving cells. The transmission on the serving cells are independent and are dynamically activated and deactivated.

For each of the cells, MIMO can be enabled. The channel coding of the feedback data transmitted via the HS-DPCCH is based on the same principle as in MIMO single cell transmission.

For detailed description on the channel coding, refer to the 3GPP specification TS 25.212.

The related instrument settings are described in Chapter 4.30, "HS-DPCCH Settings - UE", on page 185.

3.1.18 Dual Cell HSUPA (Dual Cell E-DCH)

The Dual Cell HSUPA employs carrier aggregation in the uplink. The DC-HSUPA operation is available only in combination with the DC-HSDPA. This operation uses two independent carriers, each assigned to one of the DC-HSDPA "cells".

3.1.19 UE Capabilities

MIMO, 64QAM and DC-HSDPA operation in downlink as well as 16QAM in uplink are UE capability, i.e. not all UEs will have to support them.

Several UE categories have been introduced to provide:

- DL MIMO support and support of 64QAM in addition to 16QAM and QPSK in dowlink
- 16QAM support in uplink
- Support of dual cell operation and MIMO

The R&S SMW supports all UE categories.

3.1.19.1 MIMO and 64QAM UE Capabilities

According to 3GPP TS25.306 V8.4.0, the following release 8 HS-DSCH categories with MIMO and 64QAM support are defined:

- Categories 13 and 14: Support of 64QAM No support of MIMO Maximum data rate of category 14 is 21 Mbps
- Categories 15 and 16: Support of MIMO with modulation schemes QPSK and 16QAM No support of 64QAM Maximum data rate of category 16 is 27.6 Mbps

- Categories 17 and 18: Support of MIMO with modulation schemes QPSK and 16QAM Support of 64QAM and MIMO, but not simultaneously Maximum data rate of category 18 is 27.6 Mbps when MIMO is used and 21 Mbps when 64QAM is used
- Categories 19 and 20: Simultaneous support of MIMO and all modulation schemes (QPSK, 16QAM and 64QAM) Maximum data rate of category 20 is 42.1 Mbps

3.1.19.2 UL 16QAM UE Capabilities

According to 3GPP TS25.306 V9.5.0, the following release 8 E-DCH categories with 16QAM uplink support are defined:

 Category 7 and 9: Support of 16QAM in addition to BPSK

3.1.19.3 MIMO and DC-HSDPA Operation UE Capabilities

According to 3GPP TS25.306 V9.0.0, the following release 9 HS-DSCH categories with MIMO and dual cell operation support are defined:

- Categories 21, 22, 23 and 24: Support of QPSK, 16QAM and for categories 23 and 24 also 64QAM Support of dual cell operation, but without MIMO
- Categories 25, 26, 27 and 28: Support of QPSK, 16QAM and for categories 27 and 28 also 64QAM Simultaneous support of MIMO and dual cell operation

3.1.19.4 Dual Cell E-DCH Operation UE Capabilities

According to 3GPP TS25.306 V9.5.0, the following release 9 E-DCH categories with Dual Cell E-DCH support are defined:

- Category 8: Supports only QPSK in Dual Cell E-DCH operation
- Category 9: Supports QPSK and 16QAM in Dual Cell E-DCH operation

3.1.20 Uplink discontinuous transmission (UL DTX)

Uplink discontinuous transmission (UL DTX) is one of the features of the Continuous Packet Connectivity (CPC) provided to reduce the uplink control channel overhead. UL DTX allows the UE to stop transmission of uplink DPCCH in case there is no transmission activity on E-DCH or HS-DPCCH. This is sometimes also called uplink DPCCH gating.

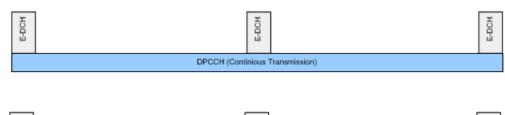


Figure 3-14: Principle of UL-DTX

Uplink DPCCH is not transmitted continuously any more, but it is transmitted from time to time according to a known activity pattern (UE-DTX cycle). This regular activity is needed in order to maintain synchronization and power control loop. Gating is only active if there is no uplink data transmission on E-DCH or HS-DPCCH transmission ongoing. In case E-DCH or HS-DPCCH is used, the uplink DPCCH is transmitted in parallel.

The 3GPP specifications defines two patterns that can be applied to adapt the DTX cycle to the traffic conditions, the UE-DTX cycle 1 and the UE-DTX cycle 2 (see also Chapter 5.3, "Configuring UL-DTX Transmission and Visualizing the Scheduling", on page 267). The UE-DTX cycle 1 is applied depending on the duration of E-DCH inactivity; the UE-DTX cycle 2 has less frequent DPCCH transmission instants and is applied whenever there is no uplink data transmission. The switching from UE-DTX cycle 2 is determined by a configurable period of inactivity.

The transmission of control signaling on the HS-DPCCH is not affected by the UL-DTX pattern. With enabled UL-DTX, the HARQ-ACK messages and the CQI reporting remains unchanged and the UE transmits acknowledgment according to the HARQ-ACK pattern, regardless of the UL-DTX cycle. Transmission of control signals does not cause switching from UE-DTX cycle 2 to UE-DTX cycle 1.

A preamble and postamble are added to the DPCCH burst for synchronisation reasons. The length of the uplink DPCCH preamble and postamble depend whether the DPCCH burst transmission is caused by user-data transmission on the E-DCH or control signaling on the HS-DPCCH.

- for the E-DCH transmission During the UE-DTX cycle 1, the DPCCH transmission starts two slots prior to the start of E-DPDCH and terminates one slot after it. For the UE-DTX cycle 2, an extended preamble of up to 15 slots is applied.
- for the HS-DPCCH transmission The preamble length depends whether an HARQ-ACK or CQI report is transmitted. Two slots are applied for the HARQ-ACK case (unless an HARQ preamble PRE is transmitted) and three in case of CQI reporting. For the latter case, an extended preamble may be applied too.

The DPCCH transmission terminates at the end of the first full DPCCH slot after the end of the HARQ-ACK/CQI field.

An instrument equipped with the required options provided an UL-DTX functionality, that is fully compliant with 3GPP TS 25.214. All dependencies from E-DCH transmis-

sions, HARQ-ACK transmissions or CQI transmissions on the DPCCH are respected. The corresponding settings are described in Chapter 4.25, "UL-DTX/User Scheduling -UE", on page 163.

Use the Scheduling List to display the UL-DTX burst pattern and transmissions of E-DCH and HS-DPCCH, as well as the impact on the UL-DPCCH transmissions or the configured uplink user scheduling.

Refer to Chapter 5.3, "Configuring UL-DTX Transmission and Visualizing the Scheduling", on page 267 for an example on how to use the UL-DTX function.

3.1.21 Uplink User Scheduling

The R&S SMW supports uplink user scheduling in Baseband A/B.

The uplink user scheduling is a function that enables you to flexible configure the scheduling of the uplink transmission. The instrument provides an interfaces for loading of externally created XML-like files with predefined file structure. The corresponding settings are described in Chapter 4.25, "UL-DTX/User Scheduling - UE", on page 163

Inter-dependencies

- The UL-DTX and the User Scheduling functions excludes each other and cannot be activated simultaneously.
- The uplink scheduling information is processed in real time and this feature can be enabled together with the "Dynamic Power Control". All UE1 channels can be power controlled.
- With enabled "User Scheduling", the value of the parameter Power Reference is fixed to "First DPCCH".
- Activated "User Scheduling" limits the number of E-DPDCH physical channel configurations. The "Overall Symbol Rates = 2x960 ksps, 2x1920 ksps and 2x960 + 2x1920 ksps" are not allowed. ¹⁾
- The features uplink user schedulung and the internal E-DCH channel codding excludes each other. ²⁾
- A PRACH preamble cannot be directly scheduled in the user schedulung file, because the user scheduling is enabled in the "DPCCH+DPDCH" mode. ³⁾

Some possible workaround approaches

- ¹⁾ To generate a signal with "Overall Symbol Rates = 2x960 ksps, 2x1920 ksps and 2x960 + 2x1920 ksps", enable two Baseband blocks to generate the corresponding "I only" and "Q only" channels and combine the outputs of the two Basebands. The resulting composite signal comprises the physical channel configuration according to the specifications.
- ²⁾ If channel coded data in the E-DCH is required, consider the use of pre-channelcoded data lists as data source for the physical E-DPDCH channel.
- ³⁾ Enable a PRACH preamble for UE2, configure the required user scheduling for UE1 and "delay" the beginning of the UE1 transmission (use the commands with parameters slot="0" and action="DPCCH_OFF", "DPDCH_OFF" and "EDCH OFF")

File Structure

Files with user scheduling information use the predefined file extension *.3g_sch and follow a predefined file structure. To explain the file structure, the following simple scheduling example is used:

```
<?xml version="1.0"?>
<SMxScheduling>
<head type="3GPP FDD" subtype="Uplink User Scheduling" Version="1" />
<!-- Comment -->
```

```
<command slot="0" action="DPCCH_OFF" /> <command slot="15" action="DPCCH_ON" />
```

</SMxScheduling>

The highlighted lines are mandatory and must not be changed. The user scheduling is performed with the <command> tag. The Table 3-18 describes the tag structure. All parameters of this tag are mandatory.

Table 3-18: Structure of tag <command>

Parameter name	Value Range	Description				
<slot></slot>	0 to 3749	 Value range deviates in the following cases: for <action="edch_ttis"> the <slot> must be a multiple of 15 (changes in the E-DCH TTI size are allowed only at the beginning of a 3GPP frame)</slot></action="edch_ttis"> for <action="repeat"> the <slot> must be a multiple of 15 and within the value range 15 to 3750.</slot></action="repeat"> 				
<action></action>	DPCCH_OFF	E Disables DPCCH transmission starting from the beginning of the specified slot				
	DPCCH_ON *	Enables DPCCH transmission starting from the beginning of the speci- fied slot				
	DPDCH_OFF	Disables DPDCH transmission starting from the beginning of the specified slot				
	DPDCH_ON *	Enables DPDCH transmission starting from the beginning of the speci- fied slot. The DPDCH must be activated with the corresponding set- tings in the instrument's user interface, see State (DPDCH).				

Parameter name	Value Range	Description		
	EDCH_OFF	Disables E-DCH transmission (i.e. the transmission in the E-DPCCH and E-DPDCH physical channels) starting from the beginning of the specified slot.		
	EDCH_ON *	Enables E-DCH transmission starting from the beginning of the speci- fied slot. The E-DPCCH and/or the E-DPDCH must be activated in the instrument's user interface, see State (E-DPCCH) and State (E- DPDCH).		
	This <action> affects only the currently active chan and/or E-DPDCH).</action>			
	EDCH_TTIS	Determines the TTI size of all E-DCH transmissions starting from the beginning of the specified slot.		
	EDCH_ETFCI	Determines the E-TFCI (Transport Block Size Index) of all subsequent E-DCH transmissions.		
		The change of the E-TFCI applies always at the beginning of the next E-DCH TTI, i.e. the E-TFCI cannot be changed during an ongoing E-DCH TTI.		
	DYNPC_OFF	Disables the dynamic power control starting from the beginning of the specified slot.		
	DYNPC_ON **	Enables the dynamic power control starting from the beginning of the specified slot, i.e. the instrument applies changes in the channel transmit powers starting from the specified slot.		
		The dynamic power control must be activated with the corresponding settings in the instrument's user interface, see Dynamic Power Control State.		
	REPEAT	Performs a loop in the action's sequence and repeats all prior defined actions starting from the beginning of the specified slot.		
		The repetition periodicity of the user scheduling is determined by the <slot> value. If <action="repeat"> is omitted, the instrument fol- lows the defined user scheduling sequence once.</action="repeat"></slot>		
		Note: The <action="repeat"> causes a repetition of the schedul- ing commands, but not necessarily guarantee an identical signal. For example, long data lists are not restarted and the effects of former dynamic power control commands still persist, even after the sequence is looped.</action="repeat">		
ttis	2 10	For <action="edch_ttis">, determines the TTI size (2 ms or 10 ms)</action="edch_ttis">		
etfci	0 to 127	For <action="edch_etfci">, determines the E-TFCI</action="edch_etfci">		

*) The instrument schedules DPCCH/DPDCH/E-DCH transmissions by default, unless an <action="DPCCH_OFF">, <action="DPCCH_OFF"> and/or <action="EDCH_OFF"> is scheduled.

**) If dynamic power control is activated in the user interface, the instrument applies the power control by default, unless an <action="DYNPC_OFF"> is scheduled.

Routing and enabling an external control signal

Scheduling Example

Refer to Chapter 5.4, "Configuring and Visualizing the Uplink User Scheduling", on page 269 for an example on how to use the user scheduling function.

3.2 Routing and enabling an external control signal

The R&S SMW uses a flexible signal to connector mapping concept. In the default instrument state, the local T/M 3 and the globally shared USER 6 connector are not configured as inputs of the external control signal.

To route and enable an external control signal, perform the following *general steps*:

- Define the connector type, "Global" or "Local", the external control signal is expected at.
- Use the Local and Global Connector Settings and define:
 - "Connector > Direction > Input".
 - "Connector > Signal > Feedback" to route and map the corresponding signal.
- Connect the control line to the configured connector.

In this firmware version, the "Global" connector is disabled.

4 3GPP FDD Configuration and Settings

▶ To access the 3GPP FDD settings, select "Baseband > 3GPP FDD".

Overview of the realtime functions that are disabled in Baseband C/D

You can access the 3GPP FDD settings in each of the baseband blocks. Consider, however, that the following realtime functions are not available in "Baseband C/D":

- UL and DL Dynamic Power Control, see Dynamic Power Control Enhanced DPCHs BS1 and Dynamic Power Control - UE
- User Scheduling, see UL-DTX/User Scheduling UE
- Real Time HS-DPCCH, see Compatibility Mode (HS-DPCCH)
- HARQ Feedback, see HARQ Simulation Settings
- the HSDPA H-Set Advanced mode is permanently active, see Advanced Mode (requires ARB)

The 3GPP FDD dialog is extremely comprehensive. To simplify the description and the orientation through this documentation, the headings of the following section follow a common naming convention:

<DialogName/TabName>< - ><SourceDialog>

This common structure is intended to identify your current location in the dialog.

The remote commands required to define these settings are described in Chapter 8, "Remote-Control Commands", on page 351.

•	General Settings for 3GPP FDD Signals	54
•	Trigger Settings	
•	Marker Settings	
•	Clock Settings	64
•	Local and Global Connector Settings	65
•	Basestations and User Equipments Settings	66
•	Test Setups/Models	72
•	Predefined Settings - Downlink	76
•	Additional User Equipment - Uplink	78
•	Base Station Settings	79
•	Compressed Mode	93
•	HSDPA Settings - BS	99
•	HSDPA H-Set Mode Settings - BS	.103
•	Enhanced Settings for P-CPICH - BS1	. 120
•	Enhanced Settings for P-CCPCH - BS1	121
•	Enhanced Settings for DPCHs - BS1	.123
•	S-CCPCH Settings - BS Channel Table	138
•	Config AICH/AP-AICH - BS Channel Table	139
•	DPCCH Settings - BS Channel Table	. 140
•	Config E-AGCH - BS Channel Table	147
•	Config E-RGCH/E-HICH - BS Channel Table	
•	Config F-DPCH - BS Channel Table	.151

General Settings for 3GPP FDD Signals

•	Multi Channel Assistant - BS User Equipment Configuration (UE)	
•	UL-DTX/User Scheduling - UE	
•	Dynamic Power Control - UE	
•	Scheduling List	
•	DPCCH Settings - UE	
•	DPDCH Settings - UE	180
•	HS-DPCCH Settings - UE	
•	E-DPCCH Settings - UE	207
•	HSUPA FRC Settings - UE	
•	E-DPDCH Settings - UE	
•	E-DCH Scheduling - UE	
•	Global Enhanced Channel Settings - UE1	
•	PRACH Settings - UE	
•	PCPCH Settings - UE	
•	Filtering, Clipping, ARB Settings	259

4.1 General Settings for 3GPP FDD Signals

To access the dialog for setting the 3GPP FDD digital standard, select "Baseband > 3GPP FDD".

3GPP FDD A				×
General Stop Trigger In Marker	Clock Internal O Basestations			
Off On On Defa	Recall S	Save	Gene Wave	
Test Case Wizard				
3GPP Version			Rele	ase 11
Chip Rate			3.84	4 Mcps
Link Direction	Downlink / Forward			·
Filter/Clipping/ARB Settings	Root Cosine / C	lip Off /	1 F	rames

This tab comprises the standard general settings, valid for the signal in both transmission directions.

State

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path. The instrument generates the 3GPP FDD signal as a combination of realtime mode (enhanced channels) and arbitrary waveform mode (all the other channels). The follwoing is a more datailed list of the channels generated in **realtime**:

- Downlink channels: P-CCPCH and up to three DPCHs of base station 1 as well as H-Sets 1 to 5.
- Uplink channels: DPCCH and one DPDCH of user equipment 1.
 Depending on the actual configurations, other channels of user equipment 1 may also be generated in realtime.

Generated in **arbitrary waveform mode** and added to the realtime signal are: PRACH and PCPCH channels and the channels of the other user equipments.

Remote command:

[:SOURce<hw>]:BB:W3GPp:STATe on page 354

Set to default

Calls the default settings. Test Model 1 (64 channels) is preset.

The parameter "State" is not affected.

Remote command:

[:SOURce<hw>]:BB:W3GPp:PRESet on page 352

Save/Recall

Accesses the "Save/Recall" dialog, i.e. the standard instrument function for storing and recalling the complete dialog related settings in a file. The provided navigation possibilities in the dialog are self-explanatory.

The file name and the directory it is stored in are user-definable; the file extension is however predefined.

Remote command:

[:SOURce<hw>]:BB:W3GPp:SETTing:CATalog? on page 353 [:SOURce<hw>]:BB:W3GPp:SETTing:LOAD on page 353 [:SOURce<hw>]:BB:W3GPp:SETTing:STORe on page 354 [:SOURce<hw>]:BB:W3GPp:SETTing:DELete on page 353

Generate Waveform

With enabled signal generation, triggers the instrument to store the current settings as an ARB signal in a waveform file. Waveform files can be further processed by the ARB and/or as a multi-carrier or a multi-segment signal.

The file name and the directory it is stored in are user-definable; the predefined file extension for waveform files is *.wv.

Remote command:

[:SOURce<hw>]:BB:W3GPp:WAVeform:CREate on page 355

Test Case Wizard

Access configuration dialog with a selection of predefined settings according to Test Cases in TS 25.141.

The provided test cases are described in Chapter 7.1, "Introduction", on page 277.

Trigger Settings

Remote command:

3GPP Version

Displays the current implemented version of the 3GPP FDD standard.

The default settings and parameters provided are oriented towards the specifications of the version displayed.

Remote command: [:SOURce]:BB:W3GPp:GPP3:VERSion? on page 355

Chip Rate

Displays the system chip rate. This is fixed at 3.84 Mcps.

To vary the output chip rate, use the parameters in the "Filter/Clipping/ARB Settings" dialog (see Chapter 4.38, "Filtering, Clipping, ARB Settings", on page 259).

Remote command: [:SOURce<hw>]:BB:W3GPp:CRATe? on page 359

Link Direction

Selects the transmission direction. Further provided settings are in accordance with this selection.

"Downlink/The transmission direction selected is base station to user equip-
ment. The signal corresponds to that of a base station."Uplink/The transmission direction selected is user equipment to base sta-
tion. The signal corresponds to that of user equipment.

Remote command:

[:SOURce<hw>]:BB:W3GPp:LINK on page 357

Offline Signal Generation > On

This indication appears in "Baseband C/D" to informs you that the signal generation is performed in offline.

A subset of realtime functions are not available in "Baseband C/D", see "Overview of the realtime functions that are disabled in Baseband C/D" on page 53.

Filtering/Clipping/ARB Settings

Access a dilaog for setting baseband filtering, clipping and the sequence length of the arbitrary waveform component. An indication of the key parameters values is provided.

See Chapter 4.38, "Filtering, Clipping, ARB Settings", on page 259 for detailed description.

Remote command:

n.a.

4.2 Trigger Settings

This tab provides an access to the settings necessary to select and configure the trigger, like trigger source, mode, trigger delay, trigger suppression, as well as to arm or trigger an internal trigger manually. The current signal generation status is displayed in the header of the tab together with information on the enabled trigger mode. As in the "Marker" and "Clock" tabs, this tab provides also an access to the settings of the related connectors.

This section focus on the available settings.

For information on how this settings affect the signal, refer to chapter "Basics" in the R&S SMW User Manual.

3GPP FDD A					_	×
General	Stop Trigger In Auto	Marker	Clock Internal	O Basesta	ations	
Mode			Auto			•
					Stop	ped
😧 Loca	I Connector Set	tings				
Globa	al Connector Se	ettings				

Routing and Enabling a Trigger

The provided trigger signals are not dedicated to a particular connector but can be mapped to one or more globally shared USER or local T/M/(C) connectors.

Use the Local and Global Connector Settings to configure the signal mapping as well as the polarity, the trigger threshold and the input impedance of the input connectors.

To route and enable a trigger signal, perform the following general steps:

- Define the signal source and the effect of a trigger event, i.e. select the "Trigger In > Mode" and "Trigger In > Source"
- Define the connector, USER or T/M/(C), the selected signal is provided at, i.e. configure the Local and Global Connector Settings.

Trigger Settings Common to All Basebands

To enable simultaneous signal generation in all basebands, the R&S SMW couples the trigger settings in the available basebands in any instrument's configuration involving signal routing with signal addition (e.g. MIMO configuration, routing and summing of basebands and/or streams).

The icon S indicates that common trigger settings are applied.

You can access and configure the common trigger source and trigger mode settings in any of the basebands. An arm or a restart trigger event applies to all basebands, too. You can still apply different delay to each of the triggers individually.

Trigger Mode ← Trigger Settings Common to All Basebands

Selects trigger mode, i.e. determines the effect of a trigger event on the signal generation.

For more information, refer to chapter "Basics" in the R&S SMW user manual.

"Auto"

The signal is generated continuously.

"Retrigger"

The signal is generated continuously. A trigger event (internal or external) causes a restart.

"Armed_Auto"

The signal is generated only when a trigger event occurs. Then the signal is generated continuously.

An "Arm" stops the signal generation. A subsequent trigger event (internal with or external) causes a restart.

"Armed_Retrigger"

The signal is generated only when a trigger event occurs. Then the signal is generated continuously. Every subsequent trigger event causes a restart. An "Arm" stops signal generation. A subsequent trigger event (internal with or external) causes a restart.

"Single"

The signal is generated only when a trigger event occurs. Then the signal is generated once to the length specified at "Signal Duration".

Every subsequent trigger event (internal or external) causes a restart.

Remote command:

[:SOURce<hw>]:BB:W3GPp[:TRIGger]:SEQuence on page 368

Defines the unit for describing the length of the signal sequence to be output in the "Single" trigger mode.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:SLUNit on page 366

Trigger Signal Duration ← Trigger Settings Common to All Basebands

Enters the length of the signal sequence to be output in the "Single" trigger mode.

Use this parameter to deliberately output part of the signal, an exact sequence of the signal, or a defined number of repetitions of the signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:SLENgth on page 365

For enabled modulation, displays the status of signal generation for all trigger modes.

"Running"

The signal is generated; a trigger was (internally or externally) initiated in triggered mode.

Trigger Settings

"Stopped"

The signal is not generated and the instrument waits for a trigger event.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:RMODe? on page 365

Stops the signal generation until subsequent trigger event occurs.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:ARM:EXECute on page 363

For internal trigger source, executes trigger manually.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXECute on page 363

Trigger Source ← Trigger Settings Common to All Basebands

The following sources of the trigger signal are available:

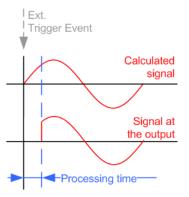
- "Internal"
- The trigger event is executed manually by the "Execute Trigger".
- "Internal (Baseband A/B)" The trigger event is provided by the trigger signal from the other basebands.
- "External Global Trigger 1 / 2" The trigger event is the active edge of an external trigger signal provided and configured at the global USER connectors.
- "External Global Clock 1 / 2" The trigger event is the active edge of an external global clock signal provided and configured at the global USER connectors.
- "External Local Trigger" The trigger event is the active edge of an external trigger signal provided and configured at the local T/M/(C) connector.
 With coupled trigger settings, the signal has to be provided at the T/M/C 1/2/3 con
 - nectors.
- "External Local Clock"

The trigger event is the active edge of an external local clock signal provided and configured at the local T/M/C connector.

With coupled trigger settings, the signal has to be provided at the T/M/C 1 connector.

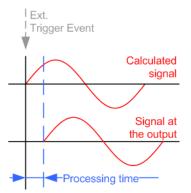
Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:SOURce on page 366



For an external trigger signal, enables/disables the output of a signal synchronous to the external trigger event.

"On"


Corresponds to the default state of this parameter.

The signal calculation starts simultaneously with the external trigger event but because of the instrument's processing time the first samples are cut off and no signal is output. After elapsing of the internal processing time, the output signal is synchronous to the trigger event.

"Off"

The signal output begins after elapsing of the processing time and starts with sample 0, i.e. the complete signal is output. This mode is recommended for triggering of short signal sequences with signal duration comparable with the processing time of the instrument.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXTernal:SYNChronize:OUTPut on page 363

External Trigger Inhibit Trigger Settings Common to All Basebands

For external trigger signal or trigger signal from the other path, sets the duration a new trigger event subsequent to triggering is suppressed. In "Retrigger" mode for example, a new trigger event will not cause a restart of the signal generation until the specified inhibit duration does not expire.

For more information, see chapter "Basics" in the R&S SMW User Manual.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:TRIGger[:EXTernal]:INHibit on page 368
[:SOURce<hw>]:BB:W3GPp:TRIGger:OBASeband:INHibit on page 364
```

Trigger Delay

Delays the trigger event of the signal from:

- The external trigger source
- The other path
- The other basebands (internal trigger), if common trigger settings are used.

Use this setting to:

- Synchronize the instrument with the device under test (DUT) or other external devices
- Postpone the signal generation start in the basebands compared to each other

For more information, see chapter "Basics on ..." in the R&S SMW user manual. Remote command:

```
[:SOURce<hw>]:BB:W3GPp:TRIGger[:EXTernal]:DELay on page 367
[:SOURce<hw>]:BB:W3GPp:TRIGger:OBASeband:DELay on page 364
```

4.3 Marker Settings

This tab provides an access to the settings necessary to select and configure the marker output signal, like the marker mode or marker delay settings.

This section focus on the available settings.

For information on how this settings affect the signal, refer to chapter "Basics" in the R&S SMW User Manual.

Marker Settings

3GPP FDD A				_ ×
Genera	al Stop Trigger In Auto	larker Clock	Basestations	
[Markei	Mode	
Marker 1	Radio Frame			
Marker 2	Radio Frame			
Marker 3	Radio Frame			
		Markei	Delay	
			Current Range	e Without Recalculation
Marker 1	0.00	00 Chips -	0	2000 Chips
Marker 2	0.00	00 Chips -	0	2000 Chips
Marker 3	0.00	00 Chips -	0	2000 Chips
			Fix Marker Dela	ay To Current Range
Lo	cal Connector Settin	gs		
Glo	obal Connector Setti	ngs		-

Routing and Enabling a Marker

The provided marker signals are not dedicated to a particular connector but can be mapped to one or more globally shared USER or local T/M/(C) connectors.

To route and enable a marker signal, perform the following general steps:

- Define the shape of the generated marker, i.e. select the "Marker > Mode"
- Define the connector, USER or T/M/(C), the selected signal is output at, i.e. configure the Local and Global Connector Settings.

Marker Mode

Marker configuration for up to 3 marker channels. The settings are used to select the marker mode defining the shape and periodicity of the markers. The contents of the dialog change with the selected marker mode; the settings are self-explanatory.

- "Slot" A marker signal is generated at the start of each slot (every 2560 chips or 0.667 ms).
- "Radio Frame" A marker signal is generated at the start of each frame (every 38400 chips or 10 ms).

"Chip Sequence Period (ARB)"

A marker signal is generated at the start of every arbitrary waveform sequence (depending on the setting for the arbitrary waveform sequence length). If the signal does not contain an arbitrary waveform component, a radio frame trigger is generated.

"System Frame Number (SFN) Restart" A marker signal is generated at the start of every SFN period (every 4096 frames).

"ON/OFFA regular marker signal that is defined by an ON/OFF ratio is gener-
ated. A period lasts one ON and OFF cycle.

The ON time and OFF time are each expressed as a number of chips and are set in an input field which opens when ON/OFF ratio is selected.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:ONTime on page 371
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime on page 371

"User" A marker signal is generated at the beginning of every user-defined "Period".

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod on page 372

"Multi Gated" An internally used marker signal.

Marker 2 and Marker 3 are automatically set to this value in the following configuration:

- "Link Direction > Uplink"
- "User Equipment > UE1 > On"
- "User Equipment > UL-DTX/User Scheduling > State > On"
- "UL-DTX/User Scheduling > Mode > User Scheduling"

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:MODE on page 371

Marker x Delay

Defines the delay between the marker signal at the marker outputs relative to the signal generation start.

Clock Settings

"Marker x" For the corresponding marker, sets the delay as a number of symbols.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay on page 369

"Current Range without Recalculation"

Displays the dynamic range within which the delay of the marker signals can be set without restarting the marker and the signal. Move the setting mark to define the delay.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MAXimum?
on page 370

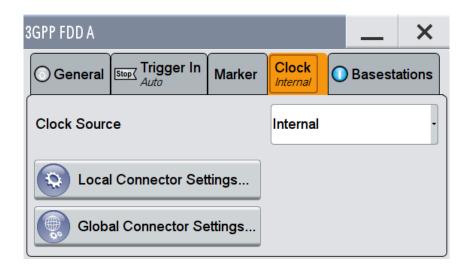
[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MINimum?
on page 370

"Fix marker delay to current range"

Restricts the marker delay setting range to the dynamic range.

Remote command:

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut:DELay:FIXed on page 369


4.4 Clock Settings

This tab provides an access to the settings necessary to select and configure the clock signal, like the clock source and clock mode.

This section focus on the available settings.

For information on how this settings affect the signal, refer to chapter "Basics" in the R&S SMW User Manual.

Defining the Clock

The provided clock signals are not dedicated to a particular connector but can be mapped to one or more globally shared USER and the two local T/M/C connectors.

Use the Local and Global Connector Settings to configure the signal mapping and the polarity, the trigger threshold, and the input impedance of the input connectors.

To route and enable a trigger signal, perform the following *general steps*:

- Define the signal source, that is select the "Clock > Source"
- Define the connector, USER or T/M/C, the selected signal is provided at, that is configure the Local and Global Connector Settings.

Clock Source

Selects the clock source.

- "Internal" The instrument uses its internal clock reference.
- "External Global Clock 1/2" The instrument expects an external clock reference at the global USER connector, as configured in the "Global Connector Settings" dialog.
- "External Local Clock"
 - The instrument expects an external clock reference at the local T/M/C connector.

Remote command:

[:SOURce<hw>]:BB:W3GPp:CLOCk:SOURce on page 373

Clock Mode

Enters the type of externally supplied clock.

Remote command: [:SOURce<hw>]:BB:W3GPp:CLOCk:MODE on page 372

Chip Clock Multiplier

Enters the multiplication factor for clock type "Multiple".

Remote command: [:SOURce<hw>]:BB:W3GPp:CLOCk:MULTiplier on page 372

Measured External Clock

Provided for permanent monitoring of the enabled and externally supplied clock signal.

```
Remote command:
CLOCk:INPut:FREQuency?
```

4.5 Local and Global Connector Settings

Each of the "Trigger In", "Marker" and "Clock" dialogs as well as the "Trigger Marker Clock" dialog provides a quick access to the related local and global connector settings.

Basestations and User Equipments Settings

For more information, refer to the description R&S SMW User Manual, section "Local and Global Connectors".

4.6 Basestations and User Equipments Settings

Depending on the selected link direction, the last tab comprises either the "Basestation" or the "User Equipment" common settings.

• "Link Direction > Downlink"

3GPP FDD A			_ ×		
General Stop Trigger In Retrig	er Clock Internal	Basestations			
Reset All Basestations Copy Basestation					
Predefined Settings		Test Setups/N	lodels		
Adjust Total Power To 0 dB	otal Power	-6.02dB			
د	Select Base	estation ———			
BS1 ✓ On	BS2		BS4		

• "Link Direction > Uplink"

3GPP FDD A	_ ×					
O General Stop Crigger In Retrig Marker Clock Internal O User Equipments						
Reset Use	Reset User Equipments Copy User Equipment					
Additional	Additional User Equipment					
Adjust Tota	Adjust Total Power To 0 dB Total Power					
	Se	lect User Equipm	ent			
	UE1	UE2	UE3	UE4		
	On					
Power Reference RMS Power						

This section describes the configuration settings common for both tabs, like OCNS settings or power configuration.

4.6.1 Common Configuration Settings

The "Configure Basestations / User Equipments" tabs cover the general parameters for configuring the respective transmisssion direction.

Reset all Base Stations

Resets all base stations to the predefined settings. The preset value for each parameter is specified in the description of the remote-control commands.

Table 4-1: Overview of the base station predefined settings

Parameter	Value
State	Off
State (all channels)	Off
Scrambling Code	0
Slot Format DPCH	8
Symbol Rate DPCH	30 ksps
Channelization Code (all channels)	0
Data Source (all channels)	PN9
Timing Offset (all channels)	0
Multi Code State (all channels)	Off

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:PRESet on page 355

Reset User Equipment

Resets all user equipment to the predefined settings. The preset value for each parameter is specified in the description of the remote-control commands.

Table 4-2: Overview of the user equipment predefined settings

Parameter	Value
State	Off
Mode	DPCCH + DPDCH
Scrambling Code (hex)	0
DPCCH Settings	
Power	0 dB
DPDCH Settings	
DPDCH State	On
HS-DPCCH, E-DPCCH and E-DPDCH State	Off

Basestations and User Equipments Settings

Parameter	Value
Channel Power	0 dB
Overall Symbol Rate	60 ksps

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:PRESet on page 449

Copy Basestation/Copy User Equipment...

Copies the settings of a base station or user equipment to a second base or user equipment. A dialog opens for creating the destination station.

Downlink / Forward link direction

Uplink / Reverse link direction

3GPP FDD A: Copy Basestation	_ ×	3GPP FDD A: Copy UE	_ ×
Copy From Source	BS1 -	Copy From Source	UE1 ·
To Destination	BS2 -	To Destination	UE2 -
Channelization Code Offset	0	Accept	
Accept			

"Copy from Source"

Selects the base station or user equipment whose settings are to be copied.

Remote command:

[:SOURce<hw>]:BB:W3GPp:COPY:SOURce on page 357

"To Destination"

Selects the base station or user equipment whose settings are to be overwritten.

Remote command:

[:SOURce<hw>]:BB:W3GPp:COPY:DESTination on page 356

"Channelization Code Offset (Base Station only)"

Enters the offset to be applied when copying the base station to the channelization codes of the destination base station. The minimum value is 0 (channelization codes are identical), the maximum value is 511.

Remote command:

[:SOURce<hw>]:BB:W3GPp:COPY:COFFset on page 355

"Accept" Starts the copy process.

Remote command:

[:SOURce<hw>]:BB:W3GPp:COPY:EXECute on page 356

Test Setups/Models

Provides an access to the test models defined in the 3GPP standard and further test setups, see Chapter 4.7, "Test Setups/Models", on page 72.

Remote command: n.a.

Predefined Settings

Access a dialog for setting predefined configurations, see Chapter 4.8, "Predefined Settings - Downlink", on page 76.

Remote command:

n.a.

Additional User Equipment

Access a dialog for simulating up to 128 additional user equipments, see Chapter 4.9, "Additional User Equipment - Uplink", on page 78.

Remote command: n.a.

Select Basestation/User Equipment

Selects the base station or user equipment by pressing the accompanying block.

A dialog for editing the selected basestation or user equipment opens (see Chapter 4.10, "Base Station Settings", on page 79 and Chapter 4.24, "User Equipment Configuration (UE)", on page 159).

To activate a base station or user equipment, enable its state.

Basestations and User Equipments Settings

Remote command:

```
(the base station or user equipment is selected by the keyword index
BSTation<[1]|2|3|4> or MSTation<i>)
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:STATe on page 425
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:STATe on page 451
```

4.6.2 General Power Settings

The power settings are enabled for "3GPP FDD > State = On".

Adjust Total Power to 0dB

Sets the power of the enabled channels so that the total power of all the active channels is 0 dB. This will not change the power ratio among the individual channels.

Remote command:

[:SOURce<hw>]:BB:W3GPp:POWer:ADJust on page 357

Total Power

Displays the total power of the active channels.

The total power is calculated from the power ratio of the powered up code channels with modulation on. If the value is not equal to 0 dB, the individual code channels (whilst still retaining the power ratios) are internally adapted so that the "Total Power" for achieving the set output level is 0 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:POWer[:TOTal]? on page 358

Power Reference

Determines the power reference for the leveling of the output signal in uplink direction.

Parameter	Power leveling performed during	Power in "Level" display equal to	"Mode" of the first active UE	
"RMS Power"	Complete signal	Output signal's mean power	 PRACH Standard PRACH Preamble Only DPCCH+DPDCH and UL- DTX Off PCPCH Standard PCPCH Preamble Only 	
"First DPCCH"	First slot in which a DPCCH, an E-DCH, a HARQ-ACK or a PCI/CQI is transmitted in the first active UE	Output signal's mean power during the first	 DPCCH+DPDCH and UL- DTX On DPCCH+DPDCH and UL- DTX Off 	
"First E-DCH"		active DPCCH		
"First HARQ- ACK"		Note: if there are other UEs or channels active during the reference slot, the total		
"First PCI/CQI"		power is used as a reference, not only the DPCCH power.		
		This mode is required if the UL-DTX is enabled, due to the long signal parts of inactivity.		
"PRACH Mes- sage Part"	PRACH Message Part of the first active UE	Output signal's mean power during the PRACH Message Part	PRACH Standard	
"Last PRACH Preamble"	Last PRACH preamble of the first active UE	Output signal's mean power during the last PRACH preamble	PRACH StandardPRACH Preamble Only	

Example:

- "RF Level" = -10 dBm (value displayed in the status bar of the instrument)
- DPCCH is activated
- E-DPCCH and one E-DPDCH are activated in the first subframe of each frame

The Figure 4-1 displays the power versus time for "Power Reference = First DPCCH": the signal level in the first subframe is -10 dBm; the RMS power of the signal is -13.3 dBm.

Spectrum				
Ref Level -6.00 dBm		20 MHz		
	Se SWT 10 ms VBW	40 MHz		
TRG:EXT				
1Rm Clrw				
			M1[1]	-10.00 dBm 500.0 µs
-7 dBm			Power	300.0 µs
			Rms	-13.30 dBm
-8 dBm				
-o dom				
-9 dBm				
M1				
And the second second second second second				
-11 dBm				
-12 dBm				
-13 dBm				
-14 dBm				
-15 dBm				
CF 1.0 GHz		691 pts		1.0 ms/
01.110.0145		091 pts		1.0 ms/ j

Figure 4-1: Example: Power Reference = First DPCCH

The Figure 4-2 displays the power versus time for "Power Reference = RMS": the RMS power of the signal is -10 dBm; the signal level in the first subframe is -6.7 dBm

Test Setups/Models

Spectrum			Em ▽
Ref Level -6.00 dBm Att 14 dB • SWT TRG:EXT	 RBW 20 MHz 10 ms VBW 40 MHz 		
1Rm Clrw			
M1 rin The liter higher		M1[1]	-6.70 dBm 500.0 µs
		Rms	-10.00 dBm
-8 dBm			
-9 dBm			
-10 dBm-			
-11 dBm			
-12 dBm			
-13 dBm			
-14 dBm			
-15 dBm			
CF 1.0 GHz	691	nte	1.0 ms/

Figure 4-2: Example: Level Reference = RMS

Remote command:

[:SOURce<hw>]:BB:W3GPp:LREFerence on page 452

4.7 Test Setups/Models

To access the dialog, select "3GPP FFD > Basestation/User Equipment > Test Setup/Models"

The dialog offers various test models, depending on the selected transmission direction. The presetting is defined in the 3GPP standard TS 25.141.

Test Models Downlink

Access a list of test models in accordance with the 3GPP standard TS 25.141.

Test Setups/Models

3GPP FDD A: Downlink/Test Model		×				
Test_Model_1_04channels		Ĩ				
Test_Model_1_08channels						
Test_Model_1_16channels						
Test_Model_1_32channels						
Test_Model_1_64channels						
Test_Model_2						
Test_Model_3_04channels						
Test_Model_3_08channels						
Test_Model_3_16channels						
Test_Model_3_32channels						
Select Recent Files	File Mai	nager				

Selecting a test model for an active base station immediately generates the selected signal configuration.

The Table 4-3 gives an overview of the available test models.

Table 4-3: Test Models Downlink

Test Model	Description
"Test Model 1 (4/8 channels)"	Test models for Home BS Spectrum emission mask ACLR Spurious emissions Transmit intermodulation Modulation accuracy Peak code domain error
"Test Model 1 (16/32/64 channels)"	 Spectrum emission mask ACLR Spurious emissions Transmit intermodulation Modulation accuracy Peak code domain error
"Test Model 2"	Output power dynamics
"Test Model 3 (4/8 channels)"	Peak code domain error test models for Home BS
"Test Model 3 (16/32 channels)"	Peak code domain error
"Test Model 4"	Error Vector Magnitude, optional P-CPICH is not active

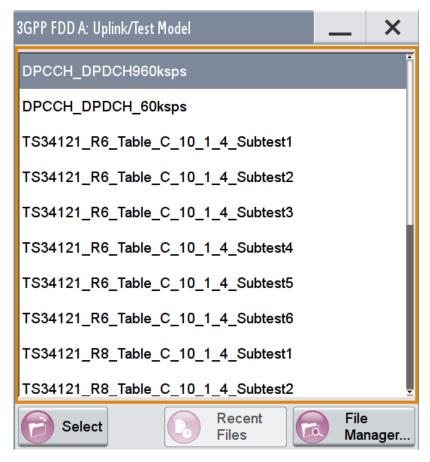
Test Setups/Models

Test Model	Description
"Test Model 4 (CPICH)"	Error Vector Magnitude, optional P-CPICH is active.
"Test Model 5 (4 HS-PDSCH + 4 DPCH)"	Error Vector Magnitude test models for Home BS at base stations that support high speed physical down- link shared channels with 16 QAM
"Test Model 5 (8 HS-PDSCH + 30 DPCH)" "Test Model 5 (4 HS-PDSCH + 14 DPCH)" "Test Model 5 (2 HS-PDSCH + 6 DPCH)"	Error Vector Magnitude at base stations that support high speed physical down- link shared channels with 16 QAM
"Test Model 6_04_4channels"	Relative Code Domain Error test models for Home BS only applicable for 64QAM modulated codes.
"Test Model 6_30_8channels"	Relative Code Domain Error only applicable for 64QAM modulated codes.

Remote command:

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:BSTation:CATalog?
on page 377

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:BSTation on page 376


Test Models Uplink

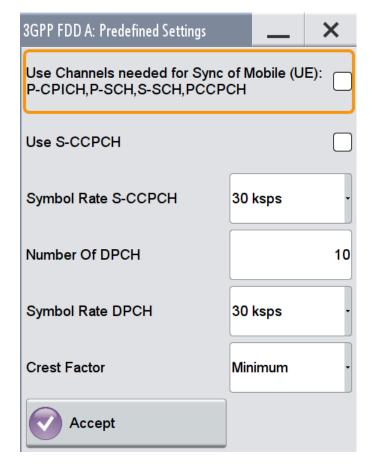
Access the predefined test signals.

The 3GPP has not defined any test models for the Uplink transmission direction. This implementation however, provides a list of useful test signals and enables you to quickly generate an uplink signal.

This instrument generaters the Uplink test models in the enhanced state of user equipment 1. An exception are the test models for the E-DPCCH and E-DPDCH, these channels are not calculated in realtime. The sequence length is not changed.

Test Setups/Models

The following table lists some examples of configurations available for selection. *Table 4-4: Test Models Uplink*


Test Model	Description
"DPCCH + DPDCH 60 ksps"	User equipment 1 is activated in DPCCH + DPDCH mode. 60 ksps is selected as the overall symbol rate. All the other settings correspond to the preset setting.
"DPCCH + DPDCH 960 ksps"	User equipment 1 is activated in DPCCH + DPDCH mode. 960 ksps is selected as the overall symbol rate. All the other settings correspond to the preset setting.
"TS34121_R6_Table_C_10_1_4_Subset1 6"	Uplink test model according to 3GPP TS 34.121 Release 6, Table C.10.1.4.
"TS34121_R8_Table_C_10_1_4_Subset1 4"	Uplink test models for transmitter characteristics tests with HS-DPCCH according to 3GPP TS 34.121 Release 8, Table C.10.1.4.
"TS34121_R8_Table_C_11_1_3_Subset1 5"	Uplink test models for transmitter characteristics tests with HS-DPCCH and E-DCH according to 3GPP TS 34.121 Release 8, Table C.11.1.3.
"TS34121_R8_Table_C_11_1_4_Subset1"	Uplink test model for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM according to 3GPP TS 34.121 Release 8, Table C.11.1.4.

```
Remote command:
[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:MSTation:CATalog?
on page 378
[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:MSTation on page 377
```

4.8 Predefined Settings - Downlink

With the "Predefined Settings" function, it is possible to create highly complex scenarios with just a few modifications. This function is of use if, say, just the envelope of the signal is of interest.

- 1. To access this dialog, enable "3GPP FDD > Link Direction > Downlink"
- 2. Select "Basestation > Predefined Settings"

The channel table of base station 1 is filled (preset) with the set parameters. The sequence length of the generated signal is 1 frame.

Use Channels

Selects if P-CPICH, P-SCH, S-SCH and PCCPCH are used in the scenario or not. These "special channels" are required by user equipment for synchronization. Remote command:

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCHannels on page 376

Use S-CCPCH

Selects if S-CCPCH is used in the scenario or not.

Remote command:

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:STATe on page 376

Symbol Rate S-CCPCH

Sets the symbol rate of S-CCPCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe on page 375

Number of DPCH

Sets the number of activated DPCHs.

The maximum number is the ratio of the chip rate and the symbol rate (maximum 512 at the lowest symbol rate of 7.5 ksps).

Remote command: [:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:COUNt on page 375

Symbol Rate DPCH

Sets the symbol rate of all DPCHs.

Remote command:

[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:SRATe on page 375

Crest Factor

Selects desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate channelization codes and timing offsets.

- "Minimum" The crest factor is minimized. The channelization codes are distributed uniformly over the code domain. The timing offsets are increased by 3 per channel.
- "Average" An average crest factor is set. The channelization codes are distributed uniformly over the code domain. The timing offsets are all set to 0.
- "Worst" The crest factor is set to an unfavorable value (i.e. maximum). The channelization codes are assigned in ascending order. The timing off-sets are all set to 0.

Remote command:

[:SOURce<hw>]:BB:W3GPp:PPARameter:CRESt on page 374

Accept

Presets the channel table of basestation 1 with the parameters defined in the Predefined Settings menu. Scrambling Code 0 is automatically selected (as defined in the 3GPP test models).

Additional User Equipment - Uplink

Remote command:

[:SOURce<hw>]:BB:W3GPp:PPARameter:EXECute on page 375

4.9 Additional User Equipment - Uplink

- 1. To access this dialog, enable "3GPP FDD > Link Direction > Uplink"
- 2. In the "User Equipment" tab , select "Additional User Equipment"

3GPP FDD A: Add UE (Based On UE4)	_	×
State		On
Number of additional UE		4
Scrambling Code Step	0000 01	
Power Offset	0.00	dB -
Time Delay Step	0	Chips -

The dialog allows you to simulate up to 128 additional user equipment and thus to generate a signal that corresponds to the received signal for a base station with high capacity utilization.

The fourth user equipment (UE4) serves as a template for all other stations.

The following parameters are the only ones modified for the additional user equipment:

- Scrambling code (different for all stations)
- Power (different to UE4, but identical among themselves)

State

Emables/disables all additional user equipment.

Remote command: [:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:STATe on page 449

Number of Additional UE

Sets the number of additional user equipment. As many as 128 additional user equipments can be simulated.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:COUNt on page 447

Scrambling Code Step

Enters the step width for increasing the scrambling code of the additional user equipment. The start value is the scrambling code of UE4.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:SCODe:STEP on page 448

Power Offset

Sets the power offset of the active channels of the additional user equipment to the power outputs of the active channels of UE4.

The resultant power must fall within the range 0 dB to - 80 dB. If the value is above or below this range, it is limited automatically.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:POWer:OFFSet on page 448

Time Delay Step

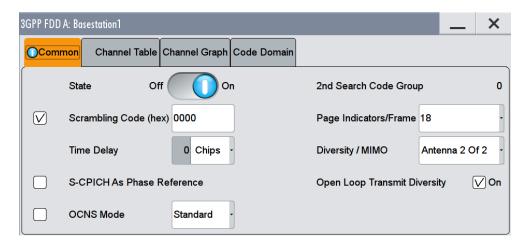
Enters the step width for the time delay of the additional user equipment to one another. The start value returns the time delay of UE4. Entry is made in chips and can be a maximum of 1 frame.

The time delay allows user equipment to be simulated even if the arrival of their signals is not synchronized at the base station.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:TDELay:STEP on page 449

4.10 Base Station Settings


Base stations can be configured independently of one another. Base station 1 (BS1) also includes enhanced channels (Enhanced Channels, Realtime).

- To access the base station settings, select "3GPP FDD > Link Direction > Downlink / Forward".
- 2. Select "Basestation > BS 1/2/3/4".

The "Basestation" dialog provides the parameters for configuring the general settings of the base station, specific base station related settings, as well as the channel table with graphical display of the structure of the currently seleced channel.

4.10.1 Common Settings

Select "Common".

This tab comprises the general parameters required for configuring the basestation.

State

Activates or deactivates the selected base station.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:STATe on page 425

2nd Search Code Group

Displays the 2nd search code group.

This parameter is specified in the table defined by the 3GPP standard "Allocation of SSCs for secondary SCH". This table assigns a specific spreading code to the synchronization code symbol for every slot in the frame. The value is calculated from the scrambling code.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SSCG? on page 424

Scrambling Code

Activates the scrambling code and sets the base station identification.

This value is also the initial value of the scrambling code generator (see Chapter 3.1.1, "Scrambling Code Generator", on page 21).

The scrambling code can be deactivated for test purposes.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCODe:STATe on page 424
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCODe on page 424

Page Indicators/Frame

Enters the number of page indicators (PI) per frame in the page indicator channel (PICH).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:PINDicator:COUNt on page 423

Time Delay

(This feature is enabled for BS 2...4 only.)

Sets the time delay of the signal of the selected base station compared to the signal of base station 1.

Remote command: [:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDELay on page 425

Diversity / MIMO

Selects the antenna and the antenna configuration to be simulated.

The R&S SMW supports two antenna configurations: a single-antenna system and a two-antenna system. Thus, an instrument equipped with two paths can simulate simultaneously the signals of both antennas of one two-antenna system. Moreover, for this two-antenna system, transmit diversity can be additionally activated or deactivated.

To simulate transmit diversity, a two-antenna system has to be selected and "Open Loop Transmit Diversity" has to be activated.

To configure HS-PDSCH MIMO channels, a two-antenna system has to be selected.

"Single Antenna"

The signal of single-antenna system is calculated and applied.

"Antenna 1 of 2"

Calculates and applies the output signal for antenna 1 of a twoantenna system.

"Antenna 2 of 2"

Calculates and applies the output signal for antenna 2 of a twoantenna system.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVersity on page 425

S-CPICH as Phase Reference

Activates or deactivates the use of S-CPICH as reference phase.

If activated the phase of S-CPICH and the phase of all DPCHs is 180 degrees offset from the phase of P-CPICH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCPich:PREFerence[:STATe] on page 424

Open Loop Transmit Diversity

(Enabled for two-antenna system only)

Activates/deactivates open loop transmit diversity. The antenna whose signal is to be simulated is selected with the parameter "Diversity/MIMO".

Various forms of transmit diversity are described in the 3GPP standard. Different coding is used to divide the signal between the two antennas. As a result, the receiver can decode the traffic signal from the two input signals and is less liable to fading and other interferences. A fixed diversity scheme is assigned to each channel type:

- TSTD (time switched transmit diversity for SCH) for P-SCH, S-SCH
- STTD (space time block coding transmit antenna diversity) for all other channels, except HS-PDSCH MIMO.

The HS-PDSCH MIMO channels are precoded as described in Chapter 3.1.15, "MIMO in HSPA+", on page 36.

These two schemes are described in detail in TS 25.211.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVersity on page 425 [:SOURce<hw>]:BB:W3GPp:BSTation<st>:OLTDiversity on page 423

4.10.2 Orthogonal Channel Noise (OCNS) Settings

With Orthogonal Channel Noise, a practical downlink signal is generated to test the maximum input levels of user equipment in accordance with standard specifications. This simulates the data and control signals of the other orthogonal channels in the downlink. 3GPP TS 25.101 contains a precise definition of the required appearance of the OCNS signal.

This section describes the provided settings. For detailed information, see Chapter 3.1.11, "Orthogonal Channel Noise (OCNS)", on page 29.

OCNS On

Activates OCNS channels according to the definition in the 3GPP standard, in BS 1.

Different OCNS scenarios are defined in the 3GPP standard. Set the scenario by means of the parameter OCNS Mode.

When activating OCNS and depending on the selected OCNS mode, different channel groups with different presetting are assigned, see tables in Chapter 3.1.11, "Orthogonal Channel Noise (OCNS)", on page 29. These channels cannot be edited in the channel table.

Remote command: [:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:STATe on page 378

OCNS Mode

Chooses the scenario for activating OCNS channels.

Four different OCNS scenarios are defined in the standard; one "standard" scenario, two scenarios for HSDPA test cases and one scenario for type 3i enhanced performance requirements tests according to 3GPP TS34.121-1 ("other user's channels"). For an overview of the provided scenarios and their settings, refer to Chapter 3.1.11, "Orthogonal Channel Noise (OCNS)", on page 29.

Note: If the "3i" OCNS mode is activated (and the "3GPP FDD > State > On"), the OCNS channels are automatically leveled in order to have a total power of 0 dB for all channels of BS 1.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:MODE on page 379

OCNS Seed

In "OCNS mode > 3i", sets the seed for both the random processes, the power control simulation process and the process controling the switch over of the channelization codes.

Remote command: [:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:SEED on page 379

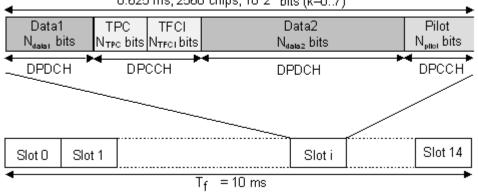
4.10.3 Channel Table

The channel table allows you to configure the individual channel parameters. The structure of the currently selected channel is displayed graphically in the table header.

- To access the basestation channel table, select "3GPP FDD > Link Direction > Downlink / Forward".
- 2. Select "Basestation > BS 1/2/3/4".
- 3. Select "Channel Table".

_	FDD A: Basestation1	el Table Chan	nel G	raph Code I	Domair)					_	>
<u>(</u>	Multi Channel As			eset All Cha			Preset To	HSDPA H	l-Set			
Data TPC Data 6 2 28								Pilot 4				
	Channel Type	Enh/HSDPA Settings	Slot Fmt	Symb Rate /ksps	Chan Code	Power /dB	Data	DList / Pattern	T Offs	DPCCH Settings	State	Dom Conf
8	AP-AICH			15	0	0.00				Config	Off	
9	PDSCH		0	15	0	0.00	PN 9				Off	
10	DL-DPCCH		0	7.5	0	0.00				Config	Off	
11	DPCH	Config	8	30	2	-16.00	PN 9		0	Config	On	
12	ОРСН	Config	10	30	3	-16.00	PN 9		134	Config	On	
13	DPCH	Config	10	30	4	-16.00	PN 9		52	Config	On	
14	HS-PDS.QPSK	Config		240	1	-17.00	PN 9				On	
15	HS-PDS.QPSK	Config		240	2	-18.00	PN 9				On	

The channel table contains a list of all channels available for a base station, and the associated parameters required for configuring the channel.


139 channels are available for each base station. Channels 0 to 10 are assigned to the special channels, with the allocation of channels 0 to 8 being fixed. Channels 9 and 10 can be assigned a PDSCH, a DL-DPCCH, an HS-SCCH, an E-AGCH, an E-RGCH, or an E-HICH.

Code channels 11 to 138 can either be assigned a DPCH, an HS-SCCH, an HS-PDSCH (QPSK), an HS-PDSCH (16QAM), an HS-PDSCH (64QAM), an HS-PDSCH (MIMO), an E-AGCH, an E-RGCH, an E-HICH, or an F-DPCH (see also Table A-1). This makes it possible to simulate the signal of a base station that supports high-speed channels.

Channels 4 and 11 to 13 of base station 1 can be generated in realtime (enhanced channels) and are highlighted in color. User-definable channel coding can be activated for these channels. Bit and block errors can be simulated and data can be added to the data and TPC fields from data lists either at the physical level or in the transport layer.

At the physical level, a downlink DPCH consists of the DPDCH (Dedicated Physical Data Channel) and the DPCCH (Dedicated Physical Control Channel); the channel characteristics are defined by the symbol rate. The DPDCH transports the user data that is fed directly into the data field.

The DPCCH transports the control fields, i.e. TFCI (Transport Format Combination Indicator), TPC (Transmit Power Control) and Pilot field. DPDCH is grouped with DPCCH using time division multiplexing in accordance with 3GPP TS 25.211 (see Figure 4-3). The formation of a downlink reference measurement channel is described in Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 123.

0.625 ms, 2560 chips, 10*2^k bits (k=0..7)

Figure 4-3: Structure of a downlink DPCH in the time domain

Multi Channel Assistant

Accesses a dialog for configuring several DPCH channels simultaneously, see Chapter 4.23, "Multi Channel Assistant - BS", on page 155.

Remote command: n.a.

Reset All Channels

Loads the default settings for the channel table.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:PRESet on page 380

Preset HSDPA H-Set

(This feature is available for BS 1 only.)

Calls the default settings of the channel table for the HSDPA H-Set mode.

Channels 12 to 17 are preset for HSDPA H-Set 1.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:HSDPa:HSET:PRESet
on page 379

Channel Number

Displays the consecutive channel numbers from 0 to 138.

All the rows are always displayed, even if the channels are inactive. They are switched on and off by the "On/Off" button in the "State" column.

Remote command:

n.a.

(selected via the suffix to the keyword : CHANnel<n>)

Channel Type

Selects channel type.

The channel type is fixed for channel numbers 0...8; for the remaining channel numbers, the choice lays between the relevant standard channels and the high-speed channels.

The first 11 channels are reserved for special channels.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TYPE on page 412

Enhanced Settings / HSDPA Settings

(Enhanced Settings are available for BS1 only.)

Accesses the dialog for configuring the enhanced channels of BS1 or the dialog for configuring the high-speed channels for all base stations.

Enhanced Settings

The channel state, "Enhanced On/Off", is displayed in different colors. Enhanced channels are generated in realtime. Channel coding in accordance with the 'Reference Measurement Channels' definition in TS25.101, TS25.104 and TS25.141 can be activated. Any other user-defined coding can also be configured and stored.

If data lists are used as the data sources for data fields and TPC fields, it is possible to load external data, for example, user information from a higher layer, to the instrument. For example, this allows externally generated data with user information to be applied, or TPC lists to be used to generate longer, non-repetitive power profiles.

To test the BER/BLER testers (e.g. integrated in the base station), it is possible to feed through artificial bit errors to all the data sources (and block errors to the CRC checksum).

The enhanced settings dialog is different for the P-CCPCH and the DPCHs (see Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 123 and Chapter 4.15, "Enhanced Settings for P-CCPCH - BS1", on page 121.

HSDPA Settings

The available settings and indications of the HSDPA settings dialog depend on the selected high-speed channel type HS-SCCH, HS-PDSCH (QPSK), HS-PDSCH (QAM) or HS-PDSCH (MIMO).

See Chapter 4.12, "HSDPA Settings - BS", on page 99.

Remote command:

n.a.

Slot Format

Enters the slot formats for the selected channel.

The range of values depends on the channel selected. For DPCH channels, for example, the slot formats are 0 to 16.

For F-DPCH channels, the slot Formats 1 to 9 are enabled only for instruments eqquiped with additional option R&S SMW-K83. The difference between the F-DPCH slot formats is the position of the 2 bits TPC field.

A slot format defines the complete structure of a slot made of data and control fields and includes the symbol rate.

Parameters set via the slot format can subsequently be changed individually.

The structure of the channel currently selected is displayed in a graphic above the channel table (slot structure).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SFORmat
on page 411

Symbol Rate

Sets the symbol rate of the selected channel. The range of values depends on the channel selected.

A change in the symbol rate may lead to a change in the slot format and vice versa.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe on page 411

Channelization Code

Enters the channelization code (formerly the spreading code number).

The code channel is spread with the set channelization code (spreading code). The range of values of the channelization code depends on the symbol rate of the channel.

The standard assigns a fixed channelization code to some channels (P-CPICH, for example, always uses channelization code 0).

The range of values runs from 0 to ((Chip Rate/Symbol Rate) - 1), where the Chip Rate is 3.84Mcps.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:CCODe on page 381

Power

Sets the channel power in dB.

The power entered is relative to the powers of the other channels. If "3GPP > Adjust Total Power to 0 dB" is executed, all the power data is relative to 0 dB.

The set "Power" value is also the start power of the channel for "Misuse TPC", "Dynamic Power Control" (enhanced channels of basestation 1) and the power control sequence simulation of the OCNS mode 3i channels. **Note:** The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%), with blanked channels, the maximum value can be increased (by "Adjust Total Power") to values greater than 0 dB (to 10*log₁₀1/duty_cycle).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:POWer on page 411

Data

Selects data source.

The following standard data sources are available:

- "All 0, All 1"
 - An internally generated sequence containing 0 data or 1 data.
- "PNxx"

An internally generated pseudo-random noise sequence.

- "Pattern" An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA on page 382
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:PATTern
```

on page 383

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:DSELect on page 383

Data Config

(This feature is available for BS1 with active channel coding only.)

Accesses a dialog for configuring the data sources of subchannels in the transport layer, see Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 123.

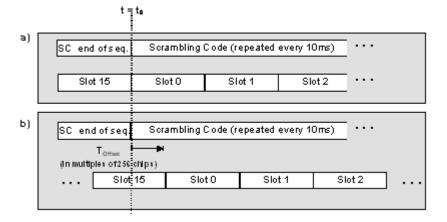
Remote command: n.a.

n.a.

Timing Offset

Sets the timing offset (T_{Offset}).

The timing offset determines the shift of the source symbols before interleaving.


The absolute starting time of the frame (slot 0) is shifted relative to the start of the scrambling code sequence by the timing offset * 256 chips. This means that whatever the symbol rate, the resolution of the timing offset is always 256 chips.

This procedure is used to reduce the crest factor. To obtain a lower crest factor, for example, a good offset from channel to channel is 1, e.g. for DPCH11 a timing offset 0, for DPCH12 a timing offset 1, for DPCH13 a timing offset 2, etc.

The illustration below shows the effect of the timing offset parameter. For various scenarios, the scrambling code sequence is shown in time relation to the data slots and to a reference time t0 (starting from t0 the signal is calculated in the instrument).

- Timing offset is not used (T_{Offset} = 0).
 The beginning of the frame (slot 0) and the beginning of the scrambling code period are synchronous with starting point t0.
- Timing offset is used $(T_{Offset} > 0)$.

The absolute starting time of the frames (slot 0) is shifted relative to the reference time t0 by TOffset * 256 chips. The beginning of the scrambling code sequence is still synchronous with reference time t0. The beginning of the scrambling code period and the frame (slot 0) are no longer synchronous.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TOFFset on page 412

DPCCH Settings

Access a dialog for configuring the control fields of the selected channel, see Chapter 4.19, "DPCCH Settings - BS Channel Table", on page 140

The selected slot format predetermines the setting of the control fields. So a change is also made to the control fields by changing the slot format and vice versa.

Remote command:

n.a.

Channel State

Activates or deactivates the channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:STATe on page 412

Domain Conflict, Resolving Domain Conflicts

Displays whether the channel has a code domain conflict with one of the channels lying above it (with a lower channel number). A special symbol marks a conflict and the column is colored soft orange. If there is no conflict, the column is colored soft blue.

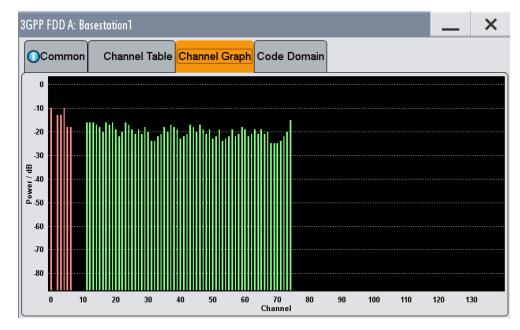
The instrument helps you to resolve code domain conflicts by automatically adapting the channelization code of the channels involved.

To access the required function, in the "3GPP FDD > Basestation > Channel Table" select the conflict symbol and trigger "Resolve Domain Conflicts".

Tip: Use the "Code Domain" to visualize the graphical display of code domain assignment by all the active code channels (see Chapter 4.10.5, "Code Domain Graph - BS", on page 90.

Refer to Chapter 5, "How to Work with the 3GPP FDD Option", on page 264 for stepby-step description.

Remote command:


```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:DCONflict[:STATe]? on page 423
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:DCONflict:RESolve on page 422
```

4.10.4 Channel Graph - BS

The channel graph display shows the active code channels.

- To access the base station channel graph, select "3GPP FDD > Link Direction > Downlink / Forward".
- 2. Select "Basestation > BS 1/2/3/4".

Base Station Settings

3. Select "Channel Graph".

The channel number is plotted on the X-axis. The red bars represent the special channels (P-CPICH to DL-DPCCH), the green bars the other channels. The height of the bars shows the relative power of the channel

4.10.5 Code Domain Graph - BS

The channelization codes are taken from a code tree of hierarchical structure (see Figure 4-4).

The higher the spreading factor, the smaller the symbol rate and vice versa. The product of the spreading factor and symbol rate is constant and always yields the chip rate.

The outer branches of the tree (right-most position in the figure) indicate the channelization codes for the smallest symbol rate (and thus the highest spreading factor). The use of a channelization code of the level with spreading factor N blocks the use of all other channelization codes of levels with spreading factor >N available in the same branch of the code tree. Channelization codes with smaller spreading factor are contained in the codes with larger spreading factor in the same code branch. When using such competitive channelization codes at the same time, the signals of associated code channels are mixed such that they can no longer be separated in the receiver. Orthogonality will then be lost.

Base Station Settings

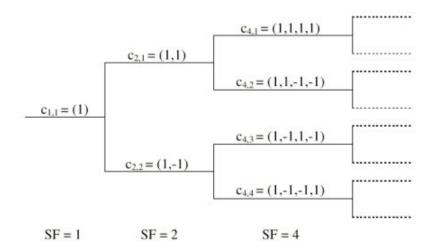


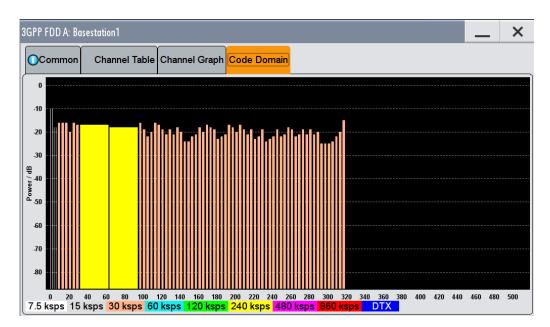
Figure 4-4: Code tree of channelization codes

The outer branches of the tree (right-most position in the figure) indicate the channelization codes for the smallest symbol rate (and thus the highest spreading factor). The use of a channelization code of the level with spreading factor N blocks the use of all other channelization codes of levels with spreading factor >N available in the same branch of the code tree.

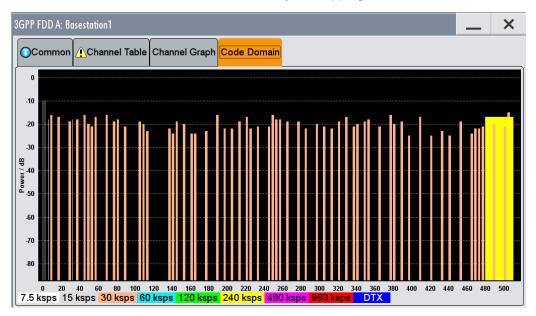
Example:

If code $c_{2,1}$ is being used, the remaining branch with $c_{4,1}$ and $c_{4,2}$ is blocked.

The domain of a certain channelization code is the outer branch range (with minimum symbol rate and max. spreading factor) which is based on the channelization code selected in the code tree. Using a spreading code means that its entire domain is used.


At a chip rate of 3.84 Mcps, the domain ranges from 0 to 511

$$= \frac{Chip_rate}{min_Symbol_rate} - 1 = \frac{3.84Mcps}{7.5ksps} - 1$$


Understanding the displayed information

The "Code Domain" display indicates the assigned code domain. The channelization code is plotted at the X-axis, the colored bars indicate coherent code channels. The colors are assigned to fixed symbol rates, the allocation is shown below the graph. The relative power can be taken from the height of the bar.

Base Station Settings

It is possible to determine from this display whether the settings made have resulted in a code domain conflict, that is to say, whether the code domains of the active channels intersect. A code domain conflict is indicated by overlapping bars.

The occupied code domain of a channel is calculated from the symbol rate of the channel, the minimum symbol rate (for 3GPP FDD 7.5 ksps), the chip rate (3.84 Mcps) and the channelization code number with

as follows:

Compressed Mode

"Lower domain limit" = current channelization code number * domain factor

"Upper domain limit" = lower domain limit + domain factor - 1.

Example:

Channel with symbol rate 30 ksps and channelization code 10:

Domain factor = 30/7.5 = 4,

Lower domain limit = $10 \times 4 = 40$,

Upper domain limit = 40 + 4 - 1 = 43.

The channel occupies the code domain 40 to 43.

Refer to Chapter 5.1, "Resolving Domain Conflicts", on page 264 for step-by-step description.

4.11 Compressed Mode

(This feature is available for BS 2...4 and UE 2...4 only.)

To enable handover of a mobile station from a 3GPP FDD base station/user equipment to another base station/user equipment, (3GPP FDD, 3GPP TDD, GSM or E-UTRA) at a different frequency, transmission and reception of the 3GPP FDD signal must be interrupted for a short time. During this time, the mobile station changes to the frequency of the new base station, for example to measure the receive level of this station or read system information.

To transmit a consistently high data volume also in the remaining (shorter) period of time, the data is compressed. This can be done by halving the spreading factor (SF/2 method) or reducing error protection (puncturing method). In both cases, transmit power in the ranges concerned is increased to maintain adequate signal quality.

Apart from these two methods, there is also the method of "higher layer scheduling". With this method, transmission of the data stream is stopped during the transmission gap. This method is suitable for packet-oriented services; it involves no power increase (power offset) in the active ranges.

Compressed Mode

4.11.1 Compressed Mode General Settings

Compressed Mode State

Activates compressed mode.

The compressed mode is configured in Chapter 4.11, "Compressed Mode", on page 93.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:STATe on page 422
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:STATe on page 454

Compressed Mode Method - UE

Selects compressed mode method.

"Higher layer The data is compressed by stopping the transmission of the data scheduling" stream during the transmission gap.

"SF/2" The data is compressed by halving the spreading factor.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:METHod on page 452

Compressed Mode Method - BS

Selects compressed mode method.

"Puncturing" The data is compressed by reducing error protection.

"Higher layer The data is compressed by stopping the transmission of the data scheduling" stream during the transmission gap.

"SF/2"

The data is compressed by halving the spreading factor. This method can be demonstrated in the code domain graph. The graph is split into two windows. The upper window shows the code domain assignment with non-compressed slots, the lower window with compressed slots. It can be recognized clearly that the DPCH bars in the lower window are wider, which is due to the reduction of the spreading factor of these channels. The other channels (e.g. CPICH) have the same width in both halves.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:METHod on page 419

DL Frame Structure - BS

Selects frame structure. The frame structure determines the transmission of TPC and pilot field in the transmission gaps.

For 3GPP FDD radio communication to operate, the mobile station receiver requires information in the pilot field for synchronization and channel estimation and in the power control field TPC for control of the mobile station transmit power.

To keep the period during which no channel estimation takes place as short as possible, the pilot is sent in the last slot of each transmission gap.

Compressed Mode

Slot #(Next-1)	→ ←	transmission soc	\rightarrow \leq $Slot #(N=+1)$	
Datal P IF Data2	R.	• • • • •	PL Datal Z CI Data2	PL

Optionally, the first TPC field of the transmission gap can be sent in addition.

- Slot #(Nent- 1)	→ ←	transmission sur	→ <	Slot #(N = +1)	
Datal P IF Data2	R	<u>,</u>	PL Datal	CI Data2	PL

"Type A (Last The pilot field is sent in the last slot of each transmission gap. Pilot)"

"Type B (FirstThe pilot field is sent in the last slot of each transmission gap. The
first TPC field of the transmission gap is sent in addition.Pilot)"

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:DLFStructure on page 419

Power Offset Mode

Selects power offset mode.

The compressed slots can be sent with a power offset, i.e. at an increased power level.

"Auto (By Pilot	The power offset is obtained as the relation between the Number of
Bit Ratio)"	pilots bits of non-compressed slots and the Number of pilot bits by
	compressed slots.

"User" The power offset is defined manually. The value is input in entry field Power offset.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>|MSTation<st>:CMODe:POMode on page 421

Power Offset

Defines power offset. The entered value is only valid for "Power Offset Mode User". Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>|MSTation<st>:CMODe:POFFset on page 421

4.11.2 Compressed Mode Configuration Graph

The remaining parameters of the compressed mode are set in the configuration graph. The graph displays the distribution of transmission gaps in a compressed mode signal.

The signal generated can be divided into three subranges.

4.11.2.1 Transmission Gaps

A transmission gap has a maximum length of 14 slots. Since at least eight active slots must be sent per frame, gaps comprising seven slots and more have to be distributed over two neighboring frames.

The transmitted signal consists of max. two patterns that are sent alternately. Each pattern comprises two transmission gaps.

The graph includes all parameters necessary to define the transmission gaps in the signal.

The settings in the graph are also valid for the compressed mode graph of the user equipment with the same number. For example, setting a distance of 9 slots for base station 4 also sets the distance to 9 slots for user equipment 4.

The parameters below are interrelated in many ways. For example, the transmission gap distance must be selected so that no frame contains more than one gap. In the event of an invalid entry, the next valid value is automatically set. If the entry is valid but changes the valid range for another parameter, the setting of the parameter is adapted.

At Slot:

Transmission gap slot number.

Remote command: [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGSN on page 421 [:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGSN on page 453

Gap Len:

Transmission gap lengths.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGL<di> on page 420

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGL<di> on page 453

Distance

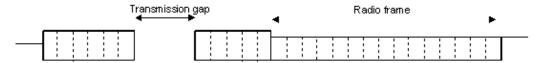
Transmission gap distance.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGD on page 420

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGD on page 452

Pattern Len:


Transmission gap pattern length. The input range is 1 ... 100 frames for pattern 1 and 0 ... 100 frames for pattern 2. Thus, it is possible to configure transmission gap pattern with only one pattern.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGPL
on page 420
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGPL
on page 453

4.11.2.2 Compressed Ranges

All slots of a frame that are not blanked are compressed. If the transmission gap is transmitted within one frame (single-frame method), an envelope as shown by the diagram on Figure 4-5 is obtained:

Figure 4-5: Envelope of compressed mode signal with single-frame method

If the transmission gap is distributed over two neighboring frames, all slots of the two frames that are not blanked are compressed (see Figure 4-6):

								Transmission gap								
	Se	cond	radio	fram	е		+	>		Se	conc	rad	io f	am	е	
 						 -										

Figure 4-6: Envelope of compressed mode signal with double-frame method

A different slot format, usually with a higher number of pilot bits, is used in the compressed ranges.

The transmit power can be increased ("Power Offset Mode") automatically or manually by defining a power offset.

4.11.2.3 Non-compressed ranges

Frames containing no transmission gaps are sent with the same slot format and the same power as in the non-compressed mode.

4.12 HSDPA Settings - BS

Generation modes of the high speed channels

The high speed channels can be generated either *continuously* as defined in test model 5, in packet mode or in H-Set mode according to TS 25.101 Annex A.7.

In *packet mode*, the start of the channel and the distance between the HSDPA packets can be set. The packet transmissions can start in one of the first five sub-frames (0 to 4). A sub-frame has the same length as a packet and is 3 slots long. A HS-SCCH starts at the beginning of the selected sub-frame, a HS-PDSCH starts with an offset of two slots to the selected sub-frame. The active parts of the HS-SCCH and the HS-PDSCH for a specific sub-frame setting differ by the slot offset of the HS-PDSCH.

Example:

Setting Sub-frame 1 HS-SCCH: slot 3 to 5 active HS-PDSCH: slot 5 to 7 active.

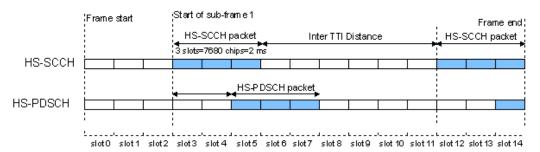


Figure 4-7: Timing diagram for the HS-SCCH and the associated HS-PDSCH, Packet Subframe 1 mode and Inter TTI Distance = 3

In *H-Set mode*, the first packet is sent in the HS-SCCH subframe 0. Up to 15 HSDPA channels are coupled to be used in the fixed reference channels. The number of coupled channels depends on the selected H-Set. Channel coding is always performed over a certain number of bits. The resulting packets are distributed evenly over one subframe of all HS-PDSCH channelization codes. Therefore, the data stream is not assigned to a defined channel but to all coupled channels.

4.12.1 Enhanced HSDPA Mode Settings

- 1. To access "Enhanced HSDPA Mode" dialog, select "Baseband > 3GPP FDD > Link Direction > Downlink / Forward".
- 2. In the "Basestations" tab, select "Select Basestations > BS 1".
- 3. In the "Channel Table" tab, select e.g. "Channel Type > HS-PDS, QPSK 16QAM".
- 4. Select "Enh/HSDPA Settings > Config...".

5. Select "HSDPA-Mode > Subframe 1".

3GPP FDD A: BS1/Enhanced11 HSDPA Mode		_ ×
HSDPA-Mode	Subframe 1	·
Burst-Mode		V On
Inter TTI Distance		5

The available settings and indications in this dialog depend on the selected HSDPA mode and channel type.

HSDPA Mode

Selects the HSDPA mode.

"Continuous"	The high-speed channel is generated continuously. This mode is used in test model 5 and 6.
"Subframe 0 1 2 3 4"	The high-speed channel is generated in packet mode. The start of the channel is set by selecting the subframe in which the first packet is sent. The distance between subsequent packets is set with parameter "Inter TTI Distance".
"H-Set"	(Available for BS1 and HS-SCCH only.) The high-speed channel is generated in packet mode. The first packet is sent in the HS-SCCH subframe 0. The number of the coupled channel in the H-Set can be changed with the parameter "Number of HS-PDSCH Channel Codes".

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MODE on page 410

Burst Mode

Activates/deactivates burst mode. The signal is bursted when on, otherwise dummy data are sent during transmission brakes.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODe[: STATe] on page 392

Inter TTI Distance (H-Set)

(Available for "subframe x")

Selects the distance between two packets in HSDPA packet mode.

The distance is set in number of sub-frames (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.

HSDPA Settings - BS

Example: Inter TTI Distance: 3 HARQ Processe: 2 =>Signaling Pattern Stream 1: 0,-,-,1,-,- Signaling Pattern Stream 2: 2,-,-,3,-,-					
Stream 1 HARQ0			HARQ1		
Stream 2 HARQ2			HARQ3		
Inter TTI Distance: 1 HARQ Processes: 5 => Signaling Pattern: 0,1,2,3,4,- Signaling Pattern: 5,6,7,8,9,-					
Stream 1 HARQ0	HARQ1	HARQ2	HARQ3	HARQ4	
Stream 2 HARQ5	HARQ6	HARQ7	HARQ8	HARQ9	

Figure 4-8: Example: Inter TTI Distance in HSDPA H-Set Mode

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa: TTIDistance on page 410

Constellation Version Parameter b - BS

(Available for "HS-PDSCH 16QAM" and "64QAM" only)

Switches the order of the constellation points of the 16QAM or 64QAM mapping.

The re-arrangement is done according to 3GPP TS25.212.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:CVPB on page 392

4.12.2 MIMO Configuration

The parameters in this section are available for instruments equipped with option R&S SMW-K83, BS1 and Channel Type HS-PDSCH (MIMO) only (see "Diversity / MIMO" on page 81).

- To access "Enhanced HSDPA Mode" dialog, select "Baseband > 3GPP FDD > Link Direction > Downlink / Forward".
- 2. In the "Basestations" tab, select "Select Basestations > BS 1".
- 3. In the "Common" tab, select "Diversity / MIMO > Antenna 1/2 of 2".
- 4. In the "Channel Table" tab, select "Channel Type > HS-PDS MIMO".
- 5. Select "Enh/HSDPA Settings > Config...".

6. Select "HSDPA-Mode > Subframe 1".

The available settings and indications in this dialog depend on the selected HSDPA mode and channel type.

MIMO Settings Modulation	
Precoding Weight Pattern (w2)	0
Stream 2 Active Pattern	1
MIMO Settings Modulation	
Modulation	Stream 1: Stream
Constellation Version Parameter - b	

Precoding Weight Pattern (w2)

Sets the precoding weight parameter w2 for MIMO precoding.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.1.15, "MIMO in HSPA+", on page 36.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: PWPattern on page 409

Stream 2 Active Pattern

Enables/disables a temporal deactivation of Stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of "1" (enables Stream 2 for that TTI) and "-" (disabled Stream 2 for that TTI).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: STAPattern on page 409

Modulation Stream 1/2 (HS-PDSCH MIMO)

Sets the modulation for stream 1 and respectively stream 2 to QPSK, 16QAM or 64QAM.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: MODulation<di> on page 409

Constellation Version Parameter b Stream 1/2 - BS

Switches the order of the constellation points of the 16QAM or 64QAM mapping. The re-arrangement is done according to 3GPP TS25.212.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:
CVPB<di> on page 408
```

4.13 HSDPA H-Set Mode Settings - BS

The Enhanced HSDPA H-Set Mode settings are available for BS1, HS-SCCH and HSDPA Mode set to H-Set only.

- 1. To access this dialog, select "3GPP FDD > Link Direction > Downlink"
- 2. Select "3GPP FDD > Basestations > Select Basestation > BS1"
- 3. In the "Basestation 1" dialog, select "Channel Table > Preset to HSDPA H-Set"
- In the "Channel Table", select "Channel#12 HS-SCCH > Enhanced Settings > Config"

4.13.1 HSDPA H-Set General Setting

3GPP FDD A: BS1/Enhanced12 HSDPA Mode	_ ×
HSDPA-Mode	Subframe 3 -
Burst-Mode	V On
Inter TTI Distance	3

Provided are the following settings:

HSDPA Mode

Selects the HSDPA mode.

"Continuous"	The high-speed channel is generated continuously. This mode is used in test model 5 and 6.
"Subframe 0 1 2 3 4"	The high-speed channel is generated in packet mode. The start of the channel is set by selecting the subframe in which the first packet is sent. The distance between subsequent packets is set with parameter "Inter TTI Distance".
"H-Set"	(Available for BS1 and HS-SCCH only.) The high-speed channel is generated in packet mode. The first packet is sent in the HS-SCCH subframe 0. The number of the coupled channel in the H-Set can be changed with the parameter "Number of HS-PDSCH Channel Codes".

HSDPA H-Set Mode Settings - BS

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MODE on page 410

Burst Mode

Activates/deactivates burst mode. The signal is bursted when on, otherwise dummy data are sent during transmission brakes.

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODe[:
STATe] on page 392

4.13.2 H-Set Configuration Common Settings

The parameters in this section are available for BS1 and HSDPA H-Set Mode only.

3GPP FDD A: BS1/Enhanced12 HSDPA Mode	_ ×
HSDPA-Mode H-Set	Burst-Mode 🗸 On
Common Global Coding Signal HARQ Sim	ulation O Bit Error O Block Error Insertion
Predefined H-Set	1 (QPSK) -
Advanced Mode (requires ARB)	On
ARB Seq. Length [Suggested / Current:	/1/1/] 💽 Adjust
Nominal Average Information Bitrate <i>I</i> kbps	534
UE Category	1
HS-SCCH Type	Type 1 (normal)

Predefined H-Set

Selects the H-Set and the modulation according to TS 25.101 Annex A.7 .

Table 4-5: Following combinations are possible:

H-Set	Modulation
1, 2, 3, 6, 10	QPSK 16QAM
4, 5, 7, 12	QPSK

H-Set	Modulation
8	64QAM
9	16QAM (Stream 1) QPSK (Stream 2)
11	64QAM (Stream 1) 16QAM (Stream 2)
User	-

Note: H-Sets 7 - 9 and H-Set 11 are enabled for instruments equipped with option R&S SMW-K83 only. H-Set 9 and H-Set 11 are available only for enabled two-antenna system (see "Diversity / MIMO" on page 81).

Several parameters are automatically set, depending on the selection made for the parameter "H-Set". However, it is also possible to change these parameters. In this case, the value of the parameter "H-Set" is automatically set to User.

Note: Use the predefined settings to let the instrument generate a signal equal to the one generated by an instrument equipped with an older firmware.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:
PREDefined on page 399

Advanced Mode (requires ARB)

(in Baseband C/D, this function is permanently active)

Activates/deactivates the advanced mode in which the H-Set will be generated by the ARB. The parameter can be configured only for H-Sets 1 - 5. For H-Sets 6 - 12 and User, it is always enabled.

For an H-Set calculated in arbitrary waveform mode (enabled "Advanced Mode") it is critical to set an appropriate "Current ARB Sequence Length" in order to generate a signal without unwanted artefacts when the pre-calculated sequence is repeated cyclically. In particular, the HARQ cycles have to terminate completely before restarting the signal.

Assistance in setting an appropriate sequence length is provided by the parameter "Suggested ARB Sequence Length" and the "Adjust" button. When working in Advanced Mode, it is recommended to adjust the current ARB sequence length to the suggested one.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: AMODe on page 393

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SLENgth? on page 403

Suggested ARB sequence length

Displays the suggested ARB sequence length.

The "Suggested ARB Sequence Length" is the calculated minimum length that depends on several parameters, like TTI distance, Number of HARQ Processes, HARQ cycles, HARQ Mode, RV Parameter Sequence, HS-SCCH Type, Precoding Weight Pattern and Stream 2 Active Pattern.

When working in "Advanced Mode", it is recommended to adjust the current ARB sequence length to the suggested one.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SLENgth? on page 403

Current ARB sequence length

Displays the current ARB sequence length or the adjusted ARB sequence length, set after pressing the button "Adjust".

When working in "Advanced Mode", it is recommended to adjust the current ARB sequence length to the suggested one.

Remote command:

[:SOURce<hw>]:BB:W3GPp:SLENgth on page 354

Adjust

Sets the current ARB sequence length to the suggested value.

When working in "Advanced Mode", it is recommended to adjust the current ARB sequence length to the suggested one.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SLENgth:ADJust on page 403

Nominal Average Information Bitrate

Indicates the average data rate on the transport layer. In case of MIMO, the parameter indicates the Combined Nominal Average Information Bitrate.

The "Nominal Average Information Bitrate" is calculated for the ideal case of infinite sequence and with regard of the Stream 2 Active Pattern.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: NAIBitrate? on page 399

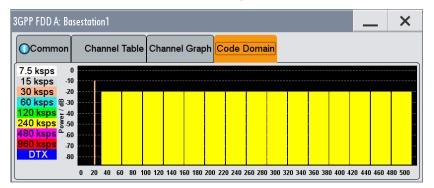
UE Category

Displays the UE category that is minimum required to receive the selected H-Set (see also Chapter 3.1.19, "UE Capabilities", on page 46).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: UECategory? on page 407

HS-SCCH Type


Sets the HS-SCCH type.

"Type 1 (nor-
mal)"Normal operation mode."Type 2 (HS-
SCCH less)"(Available for instruments equipped with option R&S SMW-K83 only)
HS-SCCH Less operation mode (see also Chapter 3.1.13, "HS-SCCH
less operation", on page 34.

"Type 3(Available for instruments equipped with option R&S SMW-K83 and
enabled two-antenna system only)
HS-SCCH Type 3 mode is defined for MIMO operation (see also

Chapter 3.1.15.2, "MIMO downlink control channel support", on page 38.

Enabling this operation mode, enables the parameters in section "MIMO Settings" and the Stream 2 parameters in sections "HARQ Simulation, Signal Structure" and "Coding Configuration". While working in HS-SCCH Type 3 mode and simulating Antenna 2 of one two-antenna system without transmit diversity, no control channel is sent although the HS-SCCH channel is displayed as active in the channel table. To prove that there is no control channel transmission consult the "Code Domain Graph".

The HS-SCCH channel is displayed as DTX.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TYPE on page 407

4.13.3 MIMO Settings

The parameters in this section are available for instruments equipped with option R&S SMW-K83, BS1, HSDPA H-Set Mode, and for HS-SCCH Type 3 (MIMO) only.

- 1. To access this dialog, select "3GPP FDD > Link Direction > Downlink".
- 2. Select "3GPP FDD > Basestations > Select Basestation > BS1".
- 3. In the "Basestation 1" dialog, select "Channel Table > Preset to HSDPA H-Set".
- 4. In the "Common" tab, select "Diversity/MIMO > Antenna 1 of 2".
- In the "Channel Table" tab, select "Channel#12 HS-SCCH > Enhanced Settings > Config...".
- In the "BS1/Enhanced HSDPA Mode" dialog, select "Common > Predefined H-Set > H-Set 9/H-Set 11".

7. Select "MIMO Settings".

3GPP FDD A: BS1/Enhanced11 HSDPA Mode	_ ×
HSDPA-Mode H-Set	Burst-Mode 🗸 On
	Signal HARQ Simulation
Precoding Weight Pattern (w2))
Stream 2 Active Pattern 1	I

The dialog contains the parameters for configuring the MIMO settings in enhanced HSDPA mode.

Precoding Weight Pattern (w2)

Selects the sequence for the MIMO precoding weight parameter w2.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.1.15, "MIMO in HSPA+", on page 36.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: PWPattern on page 400

Stream 2 Active Pattern

Enables/disables a temporal deactivation of Stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of "1" (enables Stream 2 for that TTI) and "-" (disabled Stream 2 for that TTI).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: STAPattern on page 404

4.13.4 Global Settings

The parameters in this section are available for BS1 and HSDPA H-Set Mode only.

HSDPA H-Set Mode Settings - BS

3GPP FDD A: BS1/Enhanced11 HSDPA Mode	_ ×
HSDPA-Mode H-Set	Burst-Mode 🗸 On
Common MIMO Settings Global Sign Struct	al ture HARQ Simulation
Data Source (HS-DSCH)	PN 9 .
UEID (H-RNTI)	0
Channelization Code HS-SCCH (SF128)	5
Number Of HS-PDSCH Channelization Codes	5
Start Channelization Code HS-PDSCH (SF16)	8
Total HS-PDSCH Power	-10.01 dB -

Data Source (HS-DSCH)

Selects the data source for the transport channel.

New data is retrieved from the data source each time an initial transmission is performed within one TTI. An initial transmission is performed in case of "HARQ Mode" set to Constant ACK or by each new beginning of the "Redundancy Version Sequence".

The following standard data sources are available:

- "All 0, All 1"
 - An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 - An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

• "Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA on page 396

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: DATA:PATTern on page 397

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: DATA:DSELect on page 396

UEID (H-RNTI)

Enters the UE identity which is the HS-DSCH Radio Network Identifier (H-RNTI) defined in 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UEID on page 408

Channelization Code HS-SCCH (SF128)

Sets the channelization code of the HS-SCCH.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with an older firmware, set the same "Channelization Codes" as the codes used for your physical channels.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: HSCCode on page 398

Number of HS-PDSCH Channelization Codes

Sets the number of physical HS-PDSCH data channels assigned to the HS-SCCH.

The maximum number of channels assigned to the H-Set depends on the "HS-SCCH Type" and the channel number of the first HS-PDSCH channel in the H-Set.

For HS-SCCH Type 2 (less operation) maximum of two channels can be assigned.

For HS-SCCH Type 1 (normal operation) and Type 3 (MIMO) the maximum number of assigned channels is 15.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: CLENgth on page 395

Start Channelization Code HS-PDSCH (SF16)

Sets the channelization code of the first HS-PDSCH channel in the H-Set.

The channelization codes of the rest of the HS-PDSCHs in this H-Set are set automatically.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with an older firmware, set the same "Channelization Codes" as the codes used for your physical channels.

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SCCode on page 402

Total HS-PDSCH Power

Sets the total HS-PDSCH power, i.e. sets the total power of all HS-DPSCH channels in the H-Set.

Note: In the 3GPP test specification, e.g. 3GPP TS34.121-1, the HS-PDSCH power is typically given as a total power of all HS-PDSCH channels.

Use this parameter to set the HS-PDSCH power level directly as given in the 3GPP test specification.

There are two possibilities to set the power of a H-Set:

 select "BS1 > Channel Table > HS-PDSCH Channel > Power" and set the power of the individual channels.

The total power of all HS-PDSCH channels of the H-Set depends on the Number of HS-PDSCH Channelization Codes and is calculated as follow:

TotalPower_{All HS-PDSCHs} = Power_{HS-PDSCH Channel} + 10*Log₁₀(NumberOfHS-PDSCHChannelizationCodes)

The calculated total power is displayed with the parameter "Total HS-PDSCH Power"

 set directly the total power of the H-Set, i.e set the parameter "Total HS-PDSCH Power"

The individual power levels of the HS-PDSCHs are calculated automatically and displayed in the "BS1 > Channel Table > HS-PDSCH Channel > Power".

Example:

Select "BS1 > HSDPA H-Set".

The default H-Set with 5 Channelization Codes ("BS1 > Channel table > HSDPA Settings > Config > Enhanced HSDPA Mode > Number of HS-PDSCH Channelization Codes") is configured.

The default individual power levels of the HS-PDSCH channels are -20 dB. The "Total HS-PDSCH Power" is -13.01 dB.

Set the "Total HS-PDSCH Power" to -10 dB. The individual power levels of the HS-PDSCH channels are -16.99 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: TPOWer on page 405

4.13.5 Coding Configuration

The parameters in this section are available for BS1 and HSDPA H-Set Mode only. The parameters for stream 2 are available for instruments equipped with option R&S SMW-K83 and for HS-SCCH Type 3 only.

HSDPA H-Set Mode Settings - BS

To access the dialog for the two streams case:

- 1. Select "3GPP FDD > Link Direction > Downlink".
- 2. Select "3GPP FDD > Basestations > Select Basestation > BS1".
- 3. In the "Basestation 1" dialog, select "Channel Table > Preset to HSDPA H-Set".
- 4. In the "Common" tab, select "Diversity/MIMO > Antenna 1 of 2".
- In the "Channel Table" tab, select "Channel#12 HS-SCCH > Enhanced Settings > Config...".
- In the "BS1/Enhanced HSDPA Mode" dialog, select "Common > HS-SCCH Type > Type 3 (MIMO)".
- 7. Select "Coding".

3GPP FDD A: BS1/Enhanced11 HSDPA Mode		_ ×
HSDPA-Mode H-Set	Burst-Mode 🗸 On	
Common MIMO Settings Global Codin	Signal Structure HARQ Simulation	
	Stream 1:	Stream 2:
HS-PDSCH Modulation	QPSK -	QPSK -
Binary Channel Bits Per TTI (Physical Layer)	4 800	4 800
Transport Block Size Table	Table 0 ·	Table 0
Transport Block Size Index	41	41
Information Bit Payload (TB-Size)	3 202	3 202
Coding Rate	0.667	0.667
Virtual IR Buffer Size (per HARQ Process)	9 600	9 600

This dialog contains the parameters required to configure the streams for HSDPA H-Set mode.

HS-PDSCH Modulation Stream1/2

Sets the HS-PDSCH modulation for stream 1 and stream 2 to QPSK, 16QAM or 64QAM.

Note: The modulation 64QAM is available for instruments equipped with option R&S SMW-K83 only.

For HS-SCCH Type 2, the available modulation scheme is QPSK only.

For HS-SCCH Type 3 (MIMO), the modulation selected for stream 1 has to be the higher order one, i.e. combination 16QAM/64QAM is not allowed.

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: MODulation<di> on page 398

UE Supports 64QAM

(Available for BS1, "HSDPA H-Set Mode", "HS-SCCH Type 1" and "16QAM" only) Enables/disables UE support of 64QAM.

In case this parameter is disabled, i.e. the UE does not support 64QAM, the xccs,7 bit is used for channelization information.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: S64Qam on page 402

Binary Channel Bits per TTI (Physical Layer) Stream1/2

Displays the coded binary channel bits per TTI and per stream.

The value displayed is calculated upon the values and selections for the parameters "HS-PDSCH Modulation", "Symbol Rate" and "Number of HS-PDSCH Channel Codes".

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: BCBTti<di>? on page 394

Transport Block Size Table Stream1/2

Selects Table 0 or Table 1 as described in 3GPP TS 25.321.

For "HS-PDSCH Modulation" set to 64QAM, only Table 1 is available.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: TABLe<di> on page 406

Transport Block Size Index Stream1/2

Selects the Index ki for the corresponding table and stream, as described in 3GPP TS 25.321.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: INDex<di> on page 405

Transport Block Size Reference Stream1/2

(Available for BS1, HSDPA H-Set Mode and HS-SCCH Type 2 only)

While working in less operation mode, this parameter is signaled instead of the parameter Transport Block Size Index.

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: REFerence on page 406

Information Bit Payload (TB-Size) Stream 1/2

Displays the payload of the information bit. This value determines the number of transport layer bits sent in each TTI before coding.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: BPAYload<di>? on page 394

Coding Rate Stream 1/2

Displays the resulting coding rate per stream.

The coding rate is calculated as a relation between the "Information Bit Payload" and "Binary Channel Bits per TTI".

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: CRATe<di>? on page 395

Virtual IR Buffer Size (per HARQ Process) Stream1/2

Sets the size of the Virtual IR Buffer (Number of SMLs per HARQ-Process) per stream.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: VIBSize<di> on page 408

4.13.6 Signal Structure

The parameters in this section are available for BS1 and HSDPA H-Set Mode only. The parameters for stream 2 are available for instruments equipped with option R&S SMW-K83 and for HS-SCCH Type 3 only.

3	GPP FDD A:	BS1/Enhanced11 HS	DPA Mode					_	×
ł	HSDPA-Mo	de H-Set					Bur	st-Mode	V On
		MIMO Settings	Global Settings	Coding	Signal Structure	HARQ Simulation			
Inter TTI Distance								3	
Number Of HARQ Processes Per Stream									2
Signalling Pattern Stream 1								0	,-,-,1,-,-
	Signalling F	Pattern Stream 2						2	,-,-,3,-,-

HSDPA H-Set Mode Settings - BS

Inter TTI Distance (H-Set)

(Available for "subframe x")

Selects the distance between two packets in HSDPA packet mode.

The distance is set in number of sub-frames (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.

		esse: 2 Pattern Stre	eam 1: 0,-,-, eam 2: 2,-,-,		
Stream 1	HARQ0			HARQ1	
Stream 2	HARQ2			HARQ3	

ŀ						
Stream 1	HARQ0	HARQ1	HARQ2	HARQ3	HARQ4	
Stream 2	HARQ5	HARQ6	HARQ7	HARQ8	HARQ9	

Figure 4-9: Example: Inter TTI Distance in HSDPA H-Set Mode

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa: TTIDistance on page 410

Number of HARQ Processes per Stream

Sets the number of HARQ processes. This value determines the distribution of the payload in the subframes and depends on the Inter "TTI Distance" (see figure).

A minimum of 6 HARQ Processes are required to achieve continuous data transmission.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: HARQ:LENGth on page 397

Signaling Pattern Stream1/2

Displays the distribution of packets over time. The Signaling Pattern displays a HARQ-Process cycle and is a sequence of HARQ-IDs and "-". A HARQ-ID indicates a packet, a "-" indicates no packet (see figure). The Signaling Pattern is cyclically repeated.

Long signaling patterns with regular repeating groups of HARQ-ID and "-" are not displayed completely. The signaling pattern is shortened and "..." is displayed but the scheduling is performed according to the selected "Inter TTI Distance". Long signaling patterns with irregularity in the HARQ-ID and "-" groups are displayed completely.

Depending on the selected "Burst Mode", a Dummy - TTI will be sent within the no packet subframes.

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SPATtern<di>? on page 404

4.13.7 HARQ Simulation

The parameters in this section are available for BS1 and HSDPA H-Set Mode only. The parameters for stream 2 are available for instruments equipped with option R&S SMW-K83 and for HS-SCCH Type 3 only.

3GPP FDD A: BS1/Enhanced11 HSDPA Mode	_ ×				
HSDPA-Mode H-Set	Burst-Mode V On				
Common MIMO Settings Global Coding Signal HARQ Simulation					
HARQ Mode	Constant NACK				
Redundancy Version Sequence Stream 1 0					
Redundancy Version Sequence Stream 2	0				

Mode (HARQ Simulation)

Sets the HARQ Simulation Mode.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with an older firmware, set the "HARQ Mode" to "Constant ACK".

"Constant ACK"

New data is used for each new TTI. This mode is used to simulate maximum throughput transmission.

"Constant NACK"

(enabled in "Advanced Mode" only)

Enables NACK simulation, i.e. depending on the sequence selected with parameter "Redundancy Version Parameter Sequence" packets are retransmitted. This mode is used for testing with varying redundancy version.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: HARQ:MODE on page 398

Redundancy Version Stream1/2

The parameter is enabled for "HARQ Simulation Mode" set to Constant ACK.

Enters the Redundancy Version Parameter per stream. This value determines the processing of the Forward Error Correction and Constellation Arrangement (16/64QAM modulation), see TS 25.212 4.6.2. For HS-SCCH Type 2 (less operation), the Redundancy Version Parameter is always 0.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: RVParameter<di> on page 400

Redundancy Version Sequence Stream 1/2

The parameter is enabled for "HARQ Simulation Mode" set to Constant NACK.

Enters a sequence of Redundancy Version Parameters per stream. The value of the RV parameter determines the processing of the Forward Error Correction and Constellation Arrangement (16/64QAM modulation), see TS 25.212 4.6.2.

The sequence has a length of maximum 30 values. The sequence length determines the maximum number of retransmissions. New data is retrieved from the data source after reaching the end of the sequence.

For HS-SCCH Type 2 (less operation), the Redundancy Version Parameter Sequence is always "0,3,4".

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: RVPSequence<di> on page 400

4.13.8 Error Insertion

The parameters in this section are available for BS1, HSDPA H-Set Mode and disabled Advanced Mode only.

Common Global Signal Settings Coding Signal	HARQ Simulation O Bit Error Insertion Insertion
State	Off On
Bit Error Rate	0.001 000 0
Insert Errors On	Physical Layer

In the "Bit Error Insertion" and "Block Error Insertion" sections, errors can be inserted into the data source and into the CRC checksum, in order, for example, to check the bit and block error rate testers.

Bit Error State (HSDPA H-Set)

Activates or deactivates bit error generation.

Bit errors are inserted into the data stream of the coupled HS-PDSCHs. It is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BIT:STATe on page 446

Bit Error Rate (HSDPA H-Set)

Sets the bit error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BIT:RATE on page 445

Insert Errors On (HSDPA H-Set)

Selects the layer at which bit errors are inserted.

"Transport layer"

Bit errors are inserted in the transport layer.

"Physical layer"

Bit errors are inserted in the physical layer.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BIT:LAYer on page 445

Block Error State (HSDPA H-Set)

Activates or deactivates block error generation.

The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BLOCk:STATe on page 446

Block Error Rate (HSDPA H-Set)

Sets the block error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BLOCk:RATE on page 446

4.13.9 Randomly Varying Modulation And Number Of Codes (Type 3i) Settings

(Available for enabled Advanced Mode, HS-SCCH Type 1 and for instruments equipped with option R&S SMW-K83)

- 1. To access this dialog, select "3GPP FDD > Link Direction > Downlink".
- 2. Select "3GPP FDD > Basestations > Select Basestation > BS1".

- 3. In the "Basestation 1" dialog, select "Channel Table > Preset to HSDPA H-Set".
- In the "Channel Table" tab, select "Channel#12 HS-SCCH > Enhanced Settings > Config...".
- 5. In the "BS1/Enhanced HSDPA Mode" dialog, select "Common".
- 6. Select "Advanced Mode > On".
- 7. Select "HS-SCCH Type > Type 1 (normal)"
- 8. Select the "Type 3i" tab.

3GPP FDD A: BS1/Enhanced12 HSDPA Mode	—	×				
HSDPA-Mode H-Set - Burst-I						
Common Global Settings Coding Signal Structure HARQ Simulation Type 3i						
Randomly Varying Modulation And Number Of Codes	Off	On				
Alternative HS-PDSCH Modulation 16Q	AM	•				
Alternative Number Of HS-PDSCH Channelization Codes		2				
Random Seed		0				

This section comprises the settings necessary to configure the signal of both interferer according to the 3i Enhanced Performance Requirements tests, described in 3GPP TS34.12.-1, chapters 9.2.1L and 9.2.1LA.

The used modulation and number of HS-PDSCH codes in an H-Set is randomly selected every HSDPA TTI among four options with equal probability (see Table 4-6).

Table 4-6: Used modulation and number of HS-PDSCH codes

Option	Modulation	Number of HS-PDSCH Codes
1	HS-PDSCH Modulation	Alternative Number of HS-PDSCH Channelization Codes
2	"Alternative HS-PDSCH Modula- tion" on page 120	Alternative Number of HS-PDSCH Channelization Codes
3	HS-PDSCH Modulation	Number of HS-PDSCH Channelization Codes
4	"Alternative HS-PDSCH Modula- tion" on page 120	Number of HS-PDSCH Channelization Codes

Although the number of active HS-PDSCH channels varies over time, the overall power of the HS-PDSCH channels in the H-Set stays constant, as the power of the individual HS-PDSCH channels is raised when the number is reduced.

The channel powers displayed in the "BS > Channel Table" are the channel powers during the TTIs in which the Number of HS-PDSCH Channelization Codes is applied.

Enhanced Settings for P-CPICH - BS1

The ARB sequence length suggestion (see Suggested ARB sequence length) does not consider the statistical process of the selection among the four options, it may be necessary to further increase the ARB sequence length to achieve the desired statistical properties.

To generate a signal without unwanted artefacts, select "3GPP FDD > Filter/ Clipping/ARB Settings" and set the parameter Sequence Length ARB to a multiple of the suggested length.

The configured Transport Block Size Table and Transport Block Size Index are used in all TTIs, no matter which of the four options is used. The payload size can vary over time and can deviate from the value displayed with the parameter Information Bit Payload (TB-Size) Stream 1/2.

Randomly Varying Modulation And Number Of Codes

Enables/disables the random variation of the modulation and codes.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: RVSTate on page 401

Alternative HS-PDSCH Modulation

Sets the alternative modulation (see Table 4-6).

Remote command:
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:
ALTModulation on page 394

Alternative Number of HS-PDSCH Channelization Codes

Sets the alternative number of HS-PDSCH channelization codes (see Table 4-6).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: ACLength on page 393

Random Seed

Sets the seed for the random process deciding between the four option (see Table 4-6).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SEED on page 402

4.14 Enhanced Settings for P-CPICH - BS1

To access this dialog, select "3GPP FDD > BS > Channel Table > P-CPICH > Enhanced Settings > Config".

Enhanced Settings for P-CCPCH - BS1

P-CPICH Pattern

Sets the P-CPICH pattern (channel 0).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:ENHanced:PCPich:PATTern on page 427

4.15 Enhanced Settings for P-CCPCH - BS1

To access this dialog, select "3GPP FDD > BS1 > Channel Table > P-CCPCH > Enhanced Settings > Config".

3GPP FDD A: BS1/Enhanced4 🛛 🖊 🗙	3GPP FDD A: BS1/Enhanced4	_ ×
C Enhanced 4 (is P-CCPCH) Channel Coding	Enhanced 4 (is P-CCPCH) Chann	el Coding
Enhanced State Off On On	State	Off On On
	Coding Type	Coded BCH Including SFN
	Interleaver 1 State	V On
	Interleaver 2 State	V On

The dialog comprises the settings for configuring the enhanced state of this displayed channel and the channel coding settings. Interleaver states 1 and 2 can be activated separately.

The settings for the enhanced P-CCPCH channel and the enhanced DPCH channels are different (see Chapter 4.16, "Enhanced Settings for DPCHs - BS1", on page 123.

4.15.1 Channel Number and State

Channel Number (Enhanced P-CCPCH)

Displays the channel number and the channel type.

Enhanced Settings for P-CCPCH - BS1

Remote command:

n.a.

State (Enhanced P-CCPCH)

Switches the P-CCPCH (Primary Common Control Phys. Channel) to the enhanced state. The channel signal is generated in realtime.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:STATe on page 427

4.15.2 Channel Coding - Enhanced P-CCPCH BS1

The "Channel Coding" section is where the channel coding settings are made.

The channel-coded P-CCPCH (Broadcast Channel BCH) with System Frame Number is generated according to the following principle.

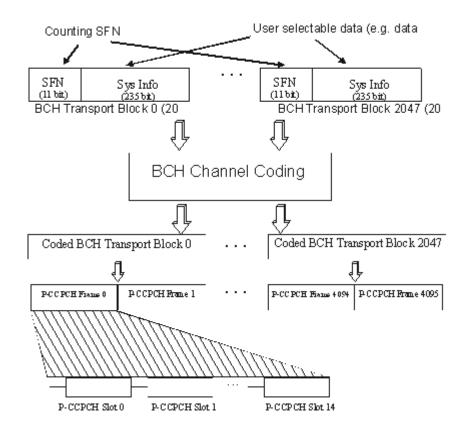


Figure 4-10: Generation of a channel coded P-CCPCH/BCH

The data blocks of the BCH at transport-channel level comprise data determined for 20 ms of the PCCPCH (i.e. 2 frames) after channel coding. The first field of such a data block is an 11bit long field for the system frame number (SFN). The SFN is automatically incremented by 1 (as stipulated in the standard) from transport block to transport block (equivalent to a step width of 2 frames due to the transport time interval length of 20 ms). After 2048 transport blocks (equivalent to 4096 frames) the SFN is reset and

starts again at 0 (SFN restart). An output trigger indicating the SFN restart can be generated.

The SFN format is defined in the standard; it is MSB-first coded.

The remaining system information (a 235-bit long field per block) is filled from the data source selected for the P-CCPCH.

A data list can be used to transmit further specific system information in addition to the SFN. If only the SFN is required, "ALL 0" is recommended as data source for P-CCPCH.

The BCH transport blocks are then channel-coded. A coded transport block comprises the data sequence for two P-CCPCH frames.

Channel Coding State

Activates or deactivates channel coding.

The coding scheme is displayed in the field below.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:STATe
on page 438

Channel Coding Type

Displays the coding scheme.

The coding scheme of P-CCPCH (BCH) is specified in the standard. The channel is generated automatically with the counting system frame number (SFN). The system information after the SFN field is completed from the selected data source.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:TYPE? on page 438

Interleaver

Activates or deactivates channel coding interleaver states 1 and 2.

Note: The interleaver states do not cause the symbol rate to change

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing: INTerleaver<di> on page 438

4.16 Enhanced Settings for DPCHs - BS1

The settings for the enhanced P-CCPCH channel (see Chapter 4.15, "Enhanced Settings for P-CCPCH - BS1", on page 121) and the enhanced DPCH channels are different. This section describes the settings for the enhanced DPCH channels (channels#11/12/13). The channels can be configured independently. Use the HSDPA Settings - BS dialog to configure the high-speed channels.

4.16.1 Channel Number and State

To access these settings, select "3GPP FDD > BS1 > Channel Table > Channel#11/12/13 > DPCH > Enhanced/HSDPA Settings > Config... > Enhanced".

3GPP FDD A: Basestation1/En	hanced Channel11			_	×
Chann	el Coding OBit Erro Insertio	n OBlock Error Insertion	Opnamic Power Control		
Enhanced State			0	ff 🔘	On

In this tab, you can activate the currently selected channel.

Enhanced State

Switches the DPCH channel to the enhanced state.

In the enhanced state, the modulation signal of the selected channel is generated in realtime. It is possible to activate channel coding and simulate bit and block errors or use dynamic power control. Data lists, for example with user data for the transport layer, can be used as the data source.

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:STATe on page 426

4.16.2 Channel Coding

To access the "Channel Coding" settings, select "3GPP FDD > BS1 > Channel Table > Channel#11/12/13 > DPCH > Enhanced/HSDPA Settings > Config... > Channel Coding".

3GPP FDD A: Basestation1/Enhanced Chan	nel11	_	×
Channel Coding	O Bit Error O Block Error O Dynamic Power Insertion O Insertion		
State	Off On) General	
Coding Type	RMC (12.2 kbps)	O DTCH 1 PN 9, 244	
User Coding		O DTCH 2 PN 9, 100	2
Slot Format	10	O DTCH 3 PN 9, 100	
Symbol Rate	30 ksps ·	O DTCH 4 PN 9, 100	
Bits per Frame (DPDCH)	510	O DTCH 5 PN 9, 100	

The "Channel Coding > General" tab comprises the settings for enabling and configuring the channel coding. The provided settings are devided into general settings and several sub-tabs, one per transport channel.

To access the channel coding settings of a transport channel, select the corresponding side tab, for example "DTCH1". Refer to Chapter 4.16.3, "Transport Channel - Enhanced DPCHs BS1", on page 128 for description of the provided settings.

A downlink reference measurement channel according to 3GPP TS 25.101 is generated when the transport channels DTCH (Dedicated Traffic Channel) and DCCH (Dedicated Control Channel), which contain the user data, are mapped to a DPCH (Dedicated Physical Channel) with a different data rate after channel coding and multiplexing. The display below is taken from the standard (TS 25.101) and shows in diagrammatic form the generation of a 12.2 kbps reference measurement channel from the DTCH and DCCH transport channels (see standard for figures and tables of other reference measurement channels).

Enhanced Settings for DPCHs - BS1

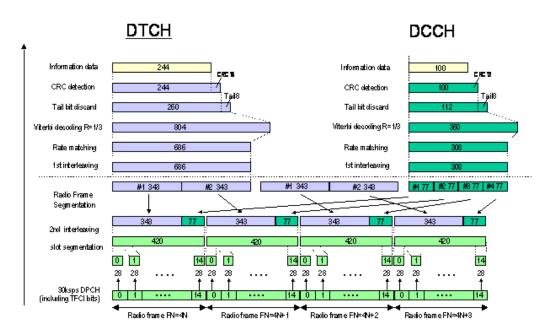


Figure 4-11: Channel coding of the 12.2 kbps reference measurement channel (downlink)

The Table 4-7 shows a summary of the transport channel parameters of the 12.2 kpbs reference measurement channel

Parameter	DCCH	ртсн
Data Source	All 0	All 0
Transport Block Size	100	244
Transmission Time Interval	40 ms	20 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	12	16
Interleaver 1/2	On	On

Table 4-7: Transport channel parameters (12.2 kpbs reference measurement channel)

Channel Coding State

Activates or deactivates channel coding.

Channel-coded measurement channels - so-called "reference measurement channels" - are required for many test procedures specified by the standard.

When channel coding is activated, (depending on the coding type) the slot format (and thus the symbol rate, the pilot length and the TFCI state) are predetermined. The corresponding parameters in the channel table are disabled.

Enhanced Settings for DPCHs - BS1

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:STATe on page 430

Channel Coding Type

Selects channel coding.

The 3GPP specification defines 4 reference measurement channel coding types, which differ in the input data bit rate bit to be processed (12.2, 64, 144 and 384 ksps). The additional AMR CODER coding scheme generates the coding of a voice channel.

The BTFD coding types with different data rates are also defined in the 3GPP specification (TS 34.121). They are used for the receiver quality test Blind Transport Format Detection. DTX (Discontinuous Transmission) bits are included in the data stream between rate matching and interleaving 1.

User coding can be defined as required in the detailed coding settings menu section revealed with button "Show Details". They can be stored and loaded in the "User Coding" submenu. Selection User is indicated as soon as a coding parameter is modified after selecting a predefined coding type.

The input data bits are taken for channel coding from the data source specified in the "Transport Channel" dialog section. The bits are available with a higher rate at the channel coding output. The allocations between the measurement input data bit rate and the output symbol rate are fixed, that is to say, the symbol rate is adjusted automatically.

The following are available for selection:

"RMC 12.2 kbps"	12.2 kbps measurement channel
"RMC 64 kbps"	64 kbps measurement channel
"RMC 144 kbps"	144 kbps measurement channel
"RMC 384 kbps"	384 kbps measurement channel
"AMR 12.2 kbps"	Channel coding for the AMR coder
"BTFD Rate 1 12.2ksps"	Blind Transport Format Detection Rate 1 (12.2 kbps)
"BTFD Rate 2 7.95ksps"	Blind Transport Format Detection Rate 2 (7.95 kbps)
"BTFD Rate 3 1.95ksps"	Blind Transport Format Detection Rate 3 (1.95 kbps)

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:TYPE on page 430

User Coding

Provides access to the standard "File Select" function of the instrument. The provided navigation possibilities in the dialog are self-explanatory.

See also, chapter "File and Data Management" in the R&S SMW User Manual.

User coding of BST1 are files with the predefined file extension *.3g_ccod_dl. The file name and the directory they are stored in are user-definable; the file extension is assigned automatically.

The complete channel coding settings are saved and recalled.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing: USER:CATalog? on page 432 [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:USER:STORe on page 432 [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:USER:LOAD on page 432

Slot Format (DPDCH)

Enters the slot format. The slot format (and thus the symbol rate, the pilot length and the TFCI state) depends on the coding type selected. The User Coding selection appears as soon as the slot format is changed.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:SFORmat on page 429

Symbol Rate (DPDCH)

Displays the symbol rate.

The symbol rate is determined by the slot format set.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:SRATe? on page 429

Bits per Frame (DPDCH)

Displays the data bits in the DPDCH component of the DPCH frame at physical level. The value depends on the slot format.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:BPFRame? on page 428

4.16.3 Transport Channel - Enhanced DPCHs BS1

 To access this dialog, select "3GPP FDD > BS1 > Channel Table > Channel#11/12/13 > DPCH > Enhanced/HSDPA Settings > Config... > Channel Coding". 2. To access the channel coding settings of a transport channel, select the corresponding side tab, for example "DTCH1".

3GPP FDD A: Basestation1/E	nhanced Chan	nel11			_	×
Enhanced 11 (is DPCH) Chan	nel Coding	Bit Error Insertion	Dynamic Powe	r		
State			Off Of	n (Gener	al
Data Source	PN 9 -				DTCH	
Transport Time Interval	20 ms 🕞	Transport Blocks			D DTCH	
Transport Block Size	244	Size Of CRC	16	-	D DTCH	
Rate Matching Attribute	256	DTX Indication Bits	(D DTCH PN 9, 10	
Error Protection	Conv 1/3 -			(D DTCH PN 9, 10	
Interleaver 1 State	<mark>⊘ O</mark> n	Interleaver 2 State	V On		DTCH PN 9, 10	

The dialog provides access to the settings of up to 7 transport channels (TCHs), the DTCHs (DTCH1 to 6) and the DCCH.

Transport Channel State

Activates or deactivates the transport channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:STATe on page 437

In case of remote control, DCCH corresponds to :TCHannel0, DTCH1 to : TCHannel1, etc.

Data Source

Selects the data source for the transport channel.

The following standard data sources are available:

- "All 0, All 1"
 - An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 - An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

 Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.

- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA on page 434

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA:PATTern on page 435

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA:DSELect on page 434

Transport Time Interval

Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:TTINterval on page 438

Transport Block

Sets the number of transport blocks for the TCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:TBCount on page 437

Transport Block Size

Sets the size of the transport block at the channel coding input.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:TBSize on page 437

Size of CRC

Defines the type (length) of the CRC. Checksum determination can also be deactivated (setting None).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:CRCSize on page 433

Rate Matching Attribute

Sets data rate matching (Rate Matching).

Enhanced Settings for DPCHs - BS1

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:RMATtribute on page 436

DTX Indication Bits

Sets the number of DTX (Discontinuous Transmission) bits. These bits are entered in the data stream between rate matching and interleaver 1. Channel coding of BTFD reference measurement channels Rate 2 and Rate 3 includes DTX267 and DTX644, respectively (see 3GPP TS 34.121).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DTX on page 435

Error Protection

Selects error protection.

"None"	No error protection
"Turbo 1/3"	Turbo Coder of rate 1/3 in accordance with the 3GPP specifications.
"Conv 1/2 1/3"	Convolution Coder of rate 1/2 or 1/3 with generator polynomials defined by 3GPP.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:EPRotection on page 435

Interleaver 1 State

Activates or deactivates channel coding interleaver state 1 of the transport channel. Interleaver state 1 can be set independently in each TCH. Activation does not change the symbol rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:INTerleaver on page 436

Interleaver 2 State

Activates or deactivates channel coding interleaver state 2 of all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: INTerleaver2 on page 433

4.16.4 Error Insertion - Enhanced DPCHs BS1

- To access this dialog, select "3GPP FDD > BS1 > Channel Table > Channel#11/12/13 > Enhanced/HSDPA Settings > Config...".
- 2. In the "Basestation /Enhanced Channel" dialog, select one of the following:

a) Select "Bit Error Insertion".

3GPP FDD A: Bases	station1/Enhanced Cha	nnel11					×
C Enhanced 11 (is DPCH)	O Channel Coding	O Bit E Inse	Error ertion	Block Error Insertion	0	Dynamic Control	Power
State					Off	\odot	On
Bit Error Rate						0.001	000 0
Insert Errors Or	n		Physi	ical Layer			-

b) Select "Block Error Insertion".

3GPP FDD A: Base	estation1/Enhanced Cha	nnel11		_ ×
C Enhanced 11 (is DPCH)	Channel Coding	⊖ Bit Error Insertion	Block Error Insertion	Opnamic Power Control
State				Off On
Block Error Ra	te			0.100 0

The dialogs provide the parameters for inserting errors into the data source and into the CRC checksum, for example, to check the bit and block error rate testers.

Bit Error State (Enhanced DPCHs)

Activates or deactivates bit error generation.

Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DERRor:BIT:STATe on page 444

Bit Error Rate

Sets the bit error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DERRor:BIT:RATE on page 443

Insert Errors On

Selects the layer in the coding process at which bit errors are inserted.

"Transport	Bit errors are inserted in the transport layer.
layer"	This selection is only available when channel coding is active.
"Physical layer"	Bit errors are inserted in the physical layer.

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DERRor:BIT:LAYer on page 443

Block Error State

Activates or deactivates block error generation.

The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DERRor:BLOCk:STATe on page 445

Block Error Rate

Sets block error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DERRor:BLOCk:RATE on page 444

4.16.5 Dynamic Power Control - Enhanced DPCHs BS1

(not supported in Baseband C/D)

The "Dynamic Power Control" section comprises the settings necessary to configure the power of the selected enhanced channel and to increase or decrease it within the predefined dynamic range ("Up Range + Down Range") and with the predefined step size ("Power Step") depending on a control signal.

The control signal can be provided either externally, internally (TPC pattern) or manually (see Mode).

The external control signal has to be supplied at the local T/M 3 or global USER 6 connector, as defined with the parameter "Connector" on page 136.

The "Dynamic Power Control" is suitable for testing of Closed (Inner) Loop Power Control in two test constellations:

 To test whether the DUT (receiver) correctly performs the SIR (Signal to Interference Ratio) measurement and inserts the corresponding bits into the TPC field of its transmitting signal.

The TPC control information is provided by an external "Dynamic Power Control" signal.

 To test whether the DUT (transmitter) responds with the correct output power to received TPC bits.

To perform this test, use a data list adapted to the test condition as TPC data source. The TPC pattern is defined in the channel table.

The power change of the channels is performed by a switchover of a mapping table, controlled by the "Dynamic Power Control" signal which is queried at the beginning of the pilot field. The limited number of mappings restricts the maximum dynamic range to 30 dB and the step width to min. 0.5 dB. The output power of each channel is thus limited to the dynamic range around the channel-specific start power.

Optaining optimum signal quality

The "Power Up Range" should not be set higher than necessary because the mapping of the I/Q level in this range must be maintained as a level margin.

Example: Principle of the downlink dynamic power control

"Power Up Range = Power Down Range"

Channel#11/13, "Direction > Up"

Channel#12, "Direction > Down"

External control signal is provided

The Figure 4-12 illustrates the adjustment in the channel power of these 3 enhanced channels.

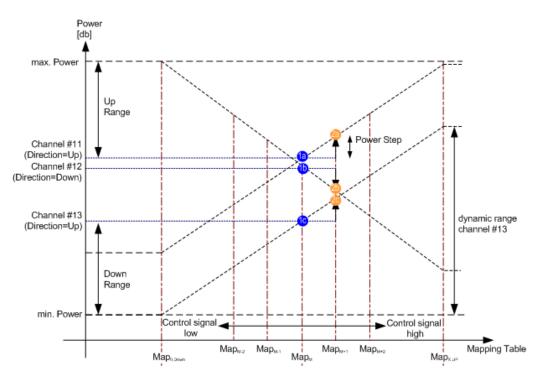


Figure 4-12: Dynamic Power Control (Down Link)

1a, 1b, 1c = Start power of the corresponding channel#11/12/13

2a, 2b, 2c = Resulting channel power of channel#11/12/13 at high level of the control signal at the begining of the pilot field.

The available mappings are shown on the X-axis with Map_M being the starting point. In this point, all channels have the start power as selected in the channel table.

At the beginning of the pilot field, the provided control signal is queried in each timeslot. Receiving of a logical "1" results in a switchover to the right mapping Map_{M+1} . This means an increase of the output power by "Power Step" for all channels with "Power Control Mode Up". In this example, the power of channel 12 is decreased by the same value (see Figure 4-12).

Receiving of a logical "0" results in a switchover to the left mapping Map_{M-1} . This means a reduction of the output power by "Power Step" for all channels with "Power Control Mode Down". The power of channel 12 is increased by the same value.

How to access the settings

To access the "Dynamic Power Control" settings, select "3GPP FDD > Channel Table > DPCH > Enhanced Settings > Dynamic Power Control".

3GPP FDD A: Bas	estation1/E	Enhanced Cha	nnel11				—	×
C Enhanced 11 (is DPCH)	Chan	nel Coding		Error ertion	Block E		Dynamic Control	Power
State	0	ff O	On					
Mode	External		•	Dyn ³⁰	amic Powe	er relative	e to Start F	ower
Connector	Local -	Sett	ings	20 뜅 ¹⁰				
Direction	Up		•	Power / 0- 10				
Power Step	1.00	dB	•	-20 -30				
Up Range	10.00	dB	•		11	12 Chann		3
Down Range	10.00	dB	•					

Dynamic Power Control State

Activates or deactivates the "Dynamic Power Control" for the selected enhanced channel.

With activated Dynamic Power Control, the power of the enhanced channel can be increased or decreased within the predefined dynamic range ("Up Range" + "Down Range") and with the predefined step size ("Power Step") with an external control signal.

The instrument expects an external control signal at the selected "Connector" on page 136.

The "Direction" settings determine if the channel power is increased or decreased by a high level of the control signal.

Enhanced Settings for DPCHs - BS1

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:STATe on page 441

Mode

Selects the control signal for Dynamic Power Control.

- "External" The instrument expects an external control signal at the selected "Connector" on page 136.
- "TPC" The TPC pattern is used for Dynamic Power Control. This selection corresponds to selection (Mis) Use TPC for not enhanced DPCHs.
- "Manual" The control signal is manually produced by selecting one of the buttons 0 or 1. Button 1 corresponds to a positive control signal, button 0 to a negative control signal. The channel power is increased or decreased depending on the

"Direction" setting by the selected power step.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:MODE on page 441

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:STEP:MANual on page 442

Connector

Determines the input connector the external control signal is supplied at.

In this firmware version, the "Global" connector is disabled.

See Chapter 3.2, "Routing and enabling an external control signal", on page 52. Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:CONNector on page 440

Direction

Determines whether the channel power is increased or decreased by a high level of the control signal (see Figure 4-12).

- "Up" A high level of the control signal leads to an increase of channel power.
- "Down" A high level of the control signal leads to a decrease of channel power.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:DIRection on page 440

Power Step

Sets step width by which – with "Dynamic Power Control" being switched on - the channel power of the selected enhanced channel in the timeslot grid (= 0,667 ms) is increased or decreased within the set dynamic range ("Up Range + Down Range").

The start power of the channel is set in the "Power" column of the channel table.

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:STEP[:EXTernal] on page 442

Up Range/Down Range

Sets dynamic range by which – with "Dynamic Power Control" switched on – the channel powers of the enhanced channels can be increased. The resulting "Dynamic Power Control" dynamic range ("Up Range" + "Down Range") depends on the selected "Power Step" and is as follow:

- For "Power Step" < 1 dB, the dynamic range ("Up Range" + "Down Range") <= 30 dB
- For "Power Step" => 1 dB, the dynamic range ("Up Range" + "Down Range") <= 60 dB

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:ENHanced:CHANnel<ch0>:DPCH: DPControl:RANGe:UP on page 441 [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:RANGe:DOWN on page 441

Power Control Graph

Indicates the deviation of the channel power (delta POW) from the set power start value of the corresponding enhanced channels.

The graph is automatically displayed with "Dynamic Power Control" switched on.

Note: A realtime update of the display in the timeslot (= 0.667 ms) is not possible and is performed in a more coarse time interval. The power control graph does not display fast channel power changes. The settled state of the control loop is however easy to recognize.

S-CCPCH Settings - BS Channel Table

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:
DPControl[:POWer]? on page 442
```

4.17 S-CCPCH Settings - BS Channel Table

To access the "S-CCPCH" settings, select "3GPP FDD > BS > Channel Table > Channel type > S-CCPCH > DPCCH Settings > Config...".

3GPP FD	D A: BS1/S-CCPCH	15	_	×
TFCI 2	Data 10		Pilo 8	t
Slot For				3
TFCI				V Use
TFCI				0
Pilot Le	ngth	8 Bit		

The selected slot format determines the provided settings. Whenever the "TFCI State" and PILOT LENGTH settings are changed, the slot format is adjusted accordingly.

Slot Structure (S-CCPCH)

Displays the slot structure.

TFCI	Data	Pilot
8	296	16

The structure of the slot depends on the selected slot format (see also 3GPP TS 25.211, Table 18: Secondary CCPCH fields)

Slot Format (S-CCPCH)

Displays the slot format.

The slot format displayed changes when a change is made to the TFCI and Pilot control field settings.

Remote command: n.a.

Use TFCI

Activates TFCI field usage.

Config AICH/AP-AICH - BS Channel Table

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI: STATe on page 386

The remote-control command is not valid for multi channel mode.

TFCI Value

Enters the value of the TFCI field (Transport Format Combination Indicator). This value is used to select a combination of 30 bits, which is divided into two groups of 15 successive slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI on page 385

The remote-control command is not valid for multi channel mode.

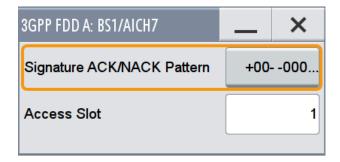
Pilot Length

Sets the length of the pilot fields.

The range of values for this parameter depends on the channel type and the symbol rate.

To achieve a constant slot length, the data fields are lengthened or shortened depending on the pilot length, as defined in the standard.

Note: The pilot fields of all active power-contrilled DPCHs must be of the same length if Dynamic Power Control State with external control signal is active.


Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth on page 384

The remote-control command is not valid for multi channel mode.

4.18 Config AICH/AP-AICH - BS Channel Table

To access the dialog for configuring the fields of the dedicated physical control channel, select "3GPP FDD > BS > Channel Table > AICH/AP-AICH > DPCCH Sett > Config...".

The dialog comproises the parameters for configuring the signature pattern and selecting the slot.

Signature ACK/NACK Pattern

Enters the 16 bit pattern for the ACK/NACK field.

This field is used by the base station to acknowledge, refuse or ignore requests of up to 16 user equipments.

""+" = ACK" The ACK is sent. Transmission was successful and correct.

""-" = NACK" The NACK is sent. Transmission was not correct.

""0" = DTX" Nothing is sent. Transmission is interrupted (Discontinuous Transmission (DTX)).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:SAPattern
on page 380
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:
SAPattern on page 381

Access Slot

Selects the slot in which the burst is transmitted.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:ASLOt
on page 380
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:ASLOt

on page 381

4.19 DPCCH Settings - BS Channel Table

The "DPCCH" settings dialog provides the parameters for configuring the fields of the dedicated physical control channel. The selected slot format determines the available settings.

4.19.1 Common Slot Structure (DPCCH)

 To access these settings dialog, select "3GPP FDD > BS > Channel Table > DPCH > DPCCH Settings > Config...".

DPCCH Settings - BS Channel Table

2. Select "Common".

3GPP FDD A	: BS1/[OPCCH11		_	_	×
Common	ТРС	Settings	DPCCH Power O	ffset		
Data 6	TPC 2		Data 24		F	Pilot 8
Slot Form	at					10
TFCI						Use
TFCI						0
Pilot Leng	jth		8	Bit		•
Multi Code	e State	Ð			(On

This dialog contains the parameters for configuring the slot format. Whenever you change the "TFCI State" and "Pilot Length" settings, the slot format is adjusted accordingly.

DataTPCDataPilot62284

The upper section of the dialog shows the structure. It depends on the slot format selected (see also 3GPP TS 25.211, Table 11: DPDCH and DPCCH fields)

Slot Format (DPCCH)

Displays the slot format.

The slot format displayed changes when a change is made to the TFCI and Pilot control field settings.

Remote command: n.a.

Use TFCI

Activates TFCI field usage.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI: STATe on page 386

The remote-control command is not valid for multi channel mode.

TFCI Value

Enters the value of the TFCI field (Transport Format Combination Indicator). This value is used to select a combination of 30 bits, which is divided into two groups of 15 successive slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI on page 385

The remote-control command is not valid for multi channel mode.

Pilot Length

Sets the length of the pilot fields.

The range of values for this parameter depends on the channel type and the symbol rate.

To achieve a constant slot length, the data fields are lengthened or shortened depending on the pilot length, as defined in the standard.

Note: The pilot fields of all active power-contrilled DPCHs must be of the same length if Dynamic Power Control State with external control signal is active.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth on page 384

The remote-control command is not valid for multi channel mode.

Multicode State (DPCCH)

Activates multicode transmission.

Multicode transmission can be activated for a group of channels destined for the same receiver that is to say, belonging to a radio link. The first channel of this group is used as the master channel.

With multicode transmission, the common components (Pilot, TPC and TCFI) for all the channels are spread using the spreading code of the master channel.

This parameter is only available for the DPCHs.

Note: The remote-control command is not valid for multi channel mode.

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:MCODe on page 383

4.19.2 TPC Settings

- To access these settings dialog, select "3GPP FDD > BS > Channel Table > DPCH > DPCCH Settings > Config...".
- 2. Select "TPC Settings".

3GPP FDD A: BS1/DPCCH11		_	×
Common TPC Settings	PCCH ower Of	fset	
TPC Source	Pa	ttern	•
TPC Pattern			0
Read Out Mode	Sir	ngle + A	Alt. 10 -
TPC For Output Power Cor	ntrol	(Mi	s-)Use
Power Step		0.00	dB -

This tab provides the parameters for configuring the TPC data source and read out mode.

TPC Data Source (DPCCH)

Selects the data source for the TPC field (Transmit Power Control). This field is used to control the transmit power.

The following standard data sources are available:

- "All 0, All 1"
 - An internally generated sequence containing 0 data or 1 data.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

- "Data List / Select TPC List"
 A binary data from a data list, internally or externally generated.
 Select "Select TPC List" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.

- Use the standard "File Manager" function to transfer external data lists to the instrument.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.

See also:

- section "Modulation Data" in the R&S SMW user manual.
- section "File and Data Management" in the R&S SMW user manual.
- section "Data List Editor" in the R&S SMW user manual.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA on page 386

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: PATTern on page 387

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: DSELect on page 387

The remote-control command is not valid for multi channel mode.

TPC Read Out Mode (DPCCH)

Defines TPC data usage.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. With all read out modes, one bit is taken from the data stream for the TPC field for each slot and entered into the bit stream several times (depending on the symbol rate). The difference between the modes lies in the usage of the TPC bits.

These different modes can be used, for example, to deliberately set a base station to a specific output power (e.g. with the pattern 11111) and then let it oscillate around this power (with Single + alt. 01 and Single + alt. 10). This then allows power measurements to be carried out at the base station (at a quasi-constant power). Together with the option (Mis-) Use TPC for output power control (see below), TPC Read Out Mode can also be used to generate various output power profiles.

- "Continuous:" The TPC bits are used cyclically.
- "Single + All 0" The TPC bits are used once, and then the TPC sequence is continued with 0 bits.
- "Single + All 1" The TPC bits are used once, and then the TPC sequence is continued with 1 bit.
- "Single + alt. The TPC bits are used once and then the TPC sequence is continued 01" with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).
- "Single + alt. The TPC bits are used once and then the TPC sequence is continued 10" with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:READ on page 388

The remote-control commands are not valid for multi channel mode.

Misuse TPC for Output Power Control (DPCCH)

Defines "mis-" use of the TPC data.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. If ("Mis-) use TPC for output power control" is activated, the specified pattern is misused; in order to vary the intrinsic transmit power over time. A bit of this pattern is removed for each slot in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified power step ("Power Step"). The upper limit for this is 0 dB and the lower limit -60 dB. The following envelope is produced at a channel power of 0 dB, power step 1.0 dB and pattern "001110100000011" and TPC Pattern ReadOut Mode "Continuous".

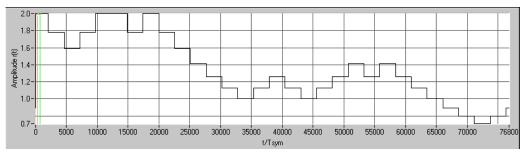


Figure 4-13: Dynamic change of channel power (continuous)

Note: The change in power is always carried out (as stipulated in the standard) at the start of the slot pilot field. Misuse TPC for Output Power Control is not available for enhanced DPCHs. Power Control via TPC pattern for enhanced channels can be selected for active Dynamic Power Control (see Chapter 4.16.5, "Dynamic Power Control - Enhanced DPCHs BS1", on page 133).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:

MISuse on page 387

The remote-control command is not valid for multi channel mode.

TPC Power Step (DPCCH)

Sets the step width of the power change in dB for (Mis-) use TPC for output power control.

Note: Misuse TPC for Output Power Control is not available for enhanced DPCHs. Power Control via TPC pattern for enhanced channels can be selected for active Dynamic Power Control (see Chapter 4.16.5, "Dynamic Power Control - Enhanced DPCHs BS1", on page 133).

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSTep on page 388

The remote-control command is not valid for multi channel mode.

4.19.3 DPCCH Power Offset

- To access these settings dialog, select "3GPP FDD > BS > Channel Table > DPCH > DPCCH Settings > Config...".
- 2. Select "DPCCH Power Offset".

11 <u> </u>
gs DPCCH Power Offset
0.00 dB -
0.00 dB -
0.00 dB -

This tab provides the parameters for configuring power offsets of the control fields to the channel power.

Power Offset Pilot (DPCCH)

Sets the power offset of the pilot field to the channel power in dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset: PILot on page 384

The remote-control command is not valid for multi channel mode.

Power Offset TPC (DPCCH)

Sets the power offset of the TPC field to the channel power in dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:

TPC on page 385

The remote-control command is not valid for multi channel mode.

Power Offset TFCI (DPCCH)

Sets the power offset of the TFCI field to the channel power in dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:

TFCI on page 385

The remote-control command is not valid for multi channel mode.

4.20 Config E-AGCH - BS Channel Table

To access the dialog for configuring the fields of the HSUPA control channels, select "3GPP FDD > BS > Channel Table > E-AGCH > DPCCH Settings > Config...".

3GPF	P FDD A: BS	1/E-AGCH14		_	×	
E-A	GCH Infor	mation Field Coding)		Vo	n
E-D	СН ТТІ				2 ms	•
Num	nber Of Co	onfigurable TTIs				3
	UEID	Absolute Grant Value Index	Absolute Gra Scope	ant		*
0	0	0	All HARQ F	rocesse	es	
1	0	0	All HARQ F	rocesse	es	
2	0	0	All HARQ F	rocesse	es	
		·				-

The dialog provides the parameter required to configure the HSUPA control channels.

E-AGCH Information Field Coding

Enables/disables the information coding. Disabling this parameter corresponds to a standard operation, i.e. no coding is performed and the data is sent uncoded. Enabling this parameter allows you to configure the way the data is coded.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: IFCoding on page 413

E-DCH TTI

Switches between 2 ms and 10 ms. The processing duration also influences the number of used slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTIEdch on page 415

Number of Configurable TTIs

Sets the number of configurable TTIs.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTICount on page 414

UEID (A-GCH)

Sets the UE Id for the selected TTI.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTI<di0>:UEID on page 414

Absolute Grant Value Index

Sets the Index for the selected TTI. According to the TS 25.212 (4.10.1 A.1), there is a cross-reference between the grant index and the grant value. The TTI configuration of the table is used cyclically. Depending on the selection made for the parameter "E-DCH TTI", each table row corresponds to a 2ms TTI or to a 10ms TTI.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTI<di0>:AGVIndex on page 414

Absolute Grant Scope

Sets the scope of the selected grant. According to the TS 25.321, the impact of each grant on the UE depends on this parameter.

For E-DCH TTI = 10ms, the "Absolute Grant Scope" is always All HARQ Processes.

Config E-RGCH/E-HICH - BS Channel Table

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:
TTI<di0>:AGSCope on page 414
```

4.21 Config E-RGCH/E-HICH - BS Channel Table

To access the "Config E-RGCH" or "Config E-HICH" dialog for configuring the fields of the HSUPA control channels, select "3GPP FDD > BS > Channel Table > E-RGCH/E-HICH > DPCCH Settings > Config...".

3GPP FDD A: BS1/E-HICH9	×	3GPP FDD A: BS1/E-RGCH9		_	×
Type Of Cell	Serving Cell 😽	Type Of Cell		Serving Cell	
E-DCH TTI	2 ms -	E-DCH TTI		2 ms	•
Signature Hopping Pattern Index	0	Signature Hopping Pattern Inc	lex		0
ACK/NACK Pattern	+	Relative Grant Pattern			+
Tau <dpch></dpch>	*256 Chips -	Tau <dpch></dpch>	0	*256 Chips	•
Tau <e-hich> 5</e-hich>	Slots -	Tau <e-rgch></e-rgch>	5	Slots	•

The dialogs provide the parameters for configuring the correpsonding HSUPA control channels.

Type of Cell

Switches between Serving Cell and Non Serving Cell. The cell type determines the number of used slots.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:
CTYPe on page 417
```

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:
CTYPe on page 415
```

E-DCH TTI

Switches between 2 ms and 10 ms. The processing duration also influences the number of used slots.

Config E-RGCH/E-HICH - BS Channel Table

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: TTIEdch on page 419 [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: TTIEdch on page 417

Signature Hopping Pattern Index – HSUPA BS

Enters a value that identifies the user equipment. The values are defined in TS 25.211.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: SSINdex on page 418

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: SSINdex on page 417

Relative Grant Pattern

(This feature is available for E-RGCH only.)

Enters a pattern: 0 = Hold, + = Up, - = Down.

Note: Pattern + is entered using the numeric key 1. Pattern - is entered via the numeric key +/-.

For Non Serving Cell "1" is not allowed.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: RGPAttern on page 418

ACK/NACK Pattern

(This feature is available for E-HICH only.)

Enters the pattern for the ACK/NACK field.

For Non Serving Cell only "+" (ACK) and "0" (no signal) is allowed. For Serving Cells only "+" (ACK) and "-" (NACK) is allowed.

Note: Pattern + is entered using the numeric key 1. Pattern - is entered via the numeric key +/-.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: RGPAttern on page 416

Tau DPCH

Enters the offset of the downlink dedicated offset channels.

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: DTAU on page 416

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: DTAU on page 418

Tau E-RGCH/E-HICH

Displays the offset of the P-CCPCH frame boundary.

Config F-DPCH - BS Channel Table

```
Remote command:
```

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:
ETAU? on page 416
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:
ETAU? on page 418
```

4.22 Config F-DPCH - BS Channel Table

This section provides the description of the setting parameters for the fractional dedicated physical control channel.

4.22.1 Common Settings

- To access these settings, select "3GPP FDD > BS > Channel Table > F-DPCCH > DPCCH Settings > Config...".
- 2. Select "Common".

3GPP FDD A:	BS1/F-DF	CH11			×		
Common	TPC Set	ttings					
DTX 4	TPC 2		D1 1-	ГХ 4			
Slot Format 1							

The "Common" tab shows the slot structure and format of the F-DPCH channel.

Slot Format (F-DPCH)

Displays the slot format as selected with the parameter "Slot Format" in the Channel Table.

The corresponding slot structure is displayed above the parameter.

DTX	DTX
2	16

Slot Formats 1 .. 9 are enabled only for instruments equipped with option R&S SMW-K83.

The difference between the F-DPCH slot formats is the position of the 2 bits TPC field.

Config F-DPCH - BS Channel Table

Remote command: n.a.

4.22.2 TPC Settings

- To access these settings, select "3GPP FDD > BS > Channel Table > F-DPCCH > DPCCH Settings > Config...".
- 2. Select "TPC Settings".

3GPP FDD A	: BS1/F-DPCH11		_	×
Common	TPC Settings			
TPC Sour	ce		Data List	
🕝 Sel	lect TPC List			dl
Read Out	Mode		Continuou	is -
TPC For (Output Power C	ontrol	V (Mis	s-)Use
Power Ste	əp		0.00	dB •

This tab contains the parameters for configuring the TPC data source and read out mode.

TPC Source

Selects the data source for the F-DPCH channel.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

- "PNxx" An internally generated pseudo rando
 - An internally generated pseudo-random noise sequence.
- "Pattern" An internally generated sequence according to a bit pattern.

Use the "Pattern" box to define the bit pattern.

• "Data List/Select DList" A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

 Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.

- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh: TPC:DATA on page 389

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh: TPC:DATA:DSELect on page 390

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh: TPC:DATA:PATTern on page 390

TPC Read Out Mode (F-DPCH)

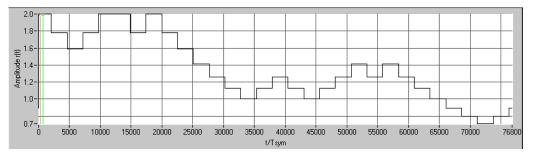
Defines TPC data usage.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. With all read out modes, one bit is taken from the data stream for the TPC field for each slot and entered into the bit stream several times (depending on the symbol rate). The difference between the modes lies in the usage of the TPC bits.

These different modes can be used, for example, to deliberately set a base station to a specific output power (e.g. with the pattern 11111) and then let it oscillate around this power (with Single + alt. 01 and Single + alt. 10). This then allows power measurements to be carried out at the base station (at a quasi-constant power). Together with the option (Mis-) Use TPC for output power control TPC Read Out Mode can also be used to generate various output power profiles.

"Continuous:"	The TPC bits are used cyclically. Note that, the remote-control commands are not valid for multi chan- nel mode.
"Single + All 0"	The TPC bits are used once, and then the TPC sequence is contin- ued with 0 bits.
"Single + All 1"	The TPC bits are used once, and then the TPC sequence is contin- ued with 1 bit.
"Single + alt. 01"	The TPC bits are used once and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).
"Single + alt. 10"	The TPC bits are used once and then the TPC sequence is continued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).

Config F-DPCH - BS Channel Table


Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh: TPC:READ on page 391

TPC For Output Power Control (Mis-) Use

Defines "mis-" use of the TPC data.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. If "(Mis-) use TPC for output power control" is activated, the specified pattern is misused; in order to vary the intrinsic transmit power over time. A bit of this pattern is removed for each slot in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified power step ("Power Step"). The upper limit for this is 0 dB and the lower limit -60 dB. The following envelope is produced at a channel power of 0 dB, power step 1.0 dB and pattern "00111010000011" and TPC Pattern ReadOut Mode "Continuous":

Remote command:

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh: TPC:MISuse on page 391

TPC Power Step (F-DPCH)

Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:
TPC:PSTep on page 391
```

4.23 Multi Channel Assistant - BS

To access this dialog, select "3GPP FDD > BS > Channel Table > Multi Channel Assistant".

3GPP FDD A Basestation1: Multi	Channel Assistant			×
Start Channel Number	11	Stop Channel Number		11
Channel Type	DРСН -			
Slot Format #	8			
Symbol Rate	30 ksps -			
Channelization Code	0	Channelization Code Step		0
Power	0.00 dB -	Power Step	0.	.00 dB -
Data Source	PN 9 -			
DPCCH Settir	ıgs			
Timing Offset	0	Timing Offset Step		0
Channel State	On			
Accept				

The "Multi Channel Assistant" allows several channels to be set simultaneously and is only available for the channel types DPCH, HS-SCCH, HS QPSK, HS 16QAM and HS 64QAM.

Enhanced state is automatically deactivated. The channel table is only filled with new values when the "Accept" button is pressed.

Start Channel Number

Enters the index for the start channel of the channel range that is set jointly.

Remote command:

n.a.

Stop Channel Number

Enters the index for the stop channel of the channel range that is set jointly.

Remote command: n.a.

Channel Type

Enters the channel type for the channel range that is set jointly. Available for selection are DPCH, HS-SCCH, HS QPSK, HS 16QAM, or HS 64QAM.

Remote command:

n.a.

Slot Format

Enters the slot format.

For DPCH channels, the slot formats are 0 to 16.

A slot format defines the structure of a slot made of data and control fields and includes the symbol rate.

The individual parameters of a slot can later be changed, with the slot format being adjusted, if necessary.

This parameter is not available for high-speed channels.

Note: For the "DPCCH Settings", this value is read-only.

Remote command:

n.a.

Symbol Rate

Sets the symbol rate. The range of values depends on the channel selected.

The symbol rate is determined by the slot format set. A change in the symbol rate leads automatically to an adjustment of the slot format.

Remote command:

n.a.

Channelization Code

Sets the channelization code for the start channel.

The channel is spread with the specified channelization code (spreading code).

The range of values of the channelization code depends on the symbol rate of the channel.

The range of values runs from 0 to (chip_rate/symbol_rate) - 1

Remote command:

n.a.

Channelization Code Step

Sets the step width for the channelization code from channel to channel.

The valid range of values for the channelization code of an individual channel must not be exceeded. If the range of values is exceeded, the channelization code is limited automatically.

Remote command: n.a.

Power

Sets the channel power of the start channel in dB.

The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed (top level of the 3GPP dialog), all the power data is relative to 0 dB.

Note: The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%), with blanked channels, the maximum value can be increased (by "Adjust Total Power") to values greater than 0 dB (to $10*\log_{10}(1/duty_cycle)$). The Power value is also the starting power of the channel for Misuse TPC and Dynamic Power Control

Remote command:

n.a.

Power Step

Enters the step width for the change of channel power from channel to channel.

The valid range of values must not be exceeded. If the range of values is exceeded, the power is automatically limited to the permissible of -80 dB to 0 dB.

Remote command:

n.a.

Data Source

Selects data source.

The following standard data sources are available:

"All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

"PNxx"

An internally generated pseudo-random noise sequence.

"Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

• Section "Modulation Data" in the R&S SMW user manual.

Section "File and Data Management" in the R&S SMW user manual.

• Section "Data List Editor" in the R&S SMW user manual

Remote command:

n.a.

DPCCH Settings

Accesses the dialog for configuring DPCCH channels, see Chapter 4.19, "DPCCH Settings - BS Channel Table", on page 140.

Remote command:

n.a.

In contrast to setting a single channel, the remote control commands are not available.

Timing Offset

Sets the timing offset for the start channel.

The timing offset determines the shift of the source symbols before interleaving.

The absolute starting time of the frame (slot 0) is shifted relative to the start of the scrambling code sequence by the timing offset * 256 chips. This means that whatever the symbol rate, the resolution of the timing offset is always 256 chips.

This procedure is used to reduce the crest factor. A good way to obtain a lower crest factor is to use an offset of 1 from channel to channel, for example.

Remote command:

n.a.

Timing Offset Step

Sets the step width for the timing offset from channel to channel.

The valid range of values must not be exceeded. If the range of values is exceeded, the timing offset is automatically limited to the permissible range.

Remote command:

n.a.

Channel State

Activates or deactivates all the channels in the set channel range.

Remote command:

n.a.

Accept

Executes automatic completion of the channel table in accordance with the parameters set.

User Equipment Configuration (UE)

Remote command: n.a.

4.24 User Equipment Configuration (UE)

- To access the user equipment settings, select "3GPP FFD > Link Direction > Uplink".
- 2. Select "3GPP FDD > User Equipment > UE 1/2/3/4".

The "User Equipment" dialog provides the parameters for configuring the general settings of mobile terminal equipment, specific user equipment related settings, as well as the channel table with graphical display of the structure of the currently seleced channel.

A user equipment has a maximum of 6 DPDCHs, with parameters largely prescribed by the 3GPP specification TS 25.211. To simplify operation, the settings are groupped into three modes with following main differences:

- With the "DPCCH + DPDCH" mode, the HSDPA channel HS-DPCCH and the HSUPA channels E-DPCCH and E-DPDCH can be activated.
- With the "PRACH only" and "PCPCH only" modes, there is also a choice between "Standard" (all parameters can be set) and "Preamble only" (only the preamble can be set).

The dialog of each particular mode only displays the parameters that are relevant.

The DPCCH and one DPDCH of user equipment 1 are generated in realtime (enhanced mode). Depending on the actual configurations, other channels of user equipment 1 may also be generated in realtime. The PRACH and PCPCH channels are not generated in realtime.

4.24.1 General and Common Settings

Select "Common".

3GPP FDD A: User Equipment1			_ ×
General Code DPCC			H E-DCH
State	Off On	Mode	DPCCH + DPDCH ·
Scrambling Code (hex)	0000 00	Scrambling Mode	Long Scrambling Code
Time Delay	0 Chips ·	UL-DTX / User Scl	heduling
Dynamic Power Contro	I		
Scheduling List			

The "General" tab comprises the settings neccessary to select the mode, e.g. "PRACH Settings" or "DPCCH Settings".

State

Activates or deactivates the selected user equipment. The number of the selected user equipment is specified in the menu header.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:STATe on page 451

Mode

Selects the mode in which the user equipment is to work. The lower part of the menu will change in accordance with the mode. The following modes are available:

"PRACH only - Standard"

In this mode, the instrument generates a single physical random access channel (PRACH). This channel is needed to set up the connection between the user equipment and the base station. All the PRACH parameters can be set in the PRACH Settings section (see Chapter 4.36, "PRACH Settings - UE", on page 236).

"PRACH only - Preamble only"

In this mode, the instrument only generates the preamble of a physical random access channel (PRACH). Only the PRACH preamble parameters can be set in the PRACH Settings section. This mode is needed for Test Case 8.8 TS 25.141.

"PCPCH only - Standard"

In this mode the instrument generates a single physical common packet channel (PCPCH). This channel is used to transmit packet-oriented services (e.g. SMS). The specific PCPCH parameters can be set in the PCPCH Settings section (see Chapter 4.37, "PCPCH Settings - UE", on page 247).

"PCPCH only - Preamble only"

In this mode, the instrument only generates the preamble of a physical common packet channel (PCPCH). Only the PRACH preamble parameters can be set in the PCPCH Settings section. This mode is needed for Test Case 8.9 TS 25.141.

"DPCCH + DPDCH"

In this mode the instrument generates a control channel (DPCCH) and up to 6 data channels (DPDCH). This mode corresponds to the standard mode of user equipment during voice and data transmission.

In addition, the HS-DPCCH, E-DPCCH and E-DPDCH channels can be activated.

Channel-specific parameters can be set in the section of the individual channels.

The DPCCH and one DPDCH of user equipment 1 are generated in realtime (enhanced mode). Depending on the actual configurations, other channels of user equipment 1 may also be generated in real-time.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:MODE on page 449

Scrambling Code (hex)

Sets the scrambling code.

The scrambling code is used to distinguish the transmitter (UE) by transmitter-dependent scrambling. Hexadecimal values are entered. Long or short scrambling codes can be generated (see also Chapter 3.1.1, "Scrambling Code Generator", on page 21).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCODe on page 450

Scrambling Mode

Sets the type of scrambling code.

With scrambling code, a distinction is made between Long and Short Scrambling Code (see also Section Scrambling Code Generator).

"Off" Disables scrambling code for test purposes.

"Long Scram- bling Code"	Sets the long scrambling code.
"Short Scram- bling Code"	(only modes "DPCCH + DPDCH" and "PCPCH only") Sets short scrambling code. The short scrambling code is only standardized for DPCCH and DPDCH channels. But it can also be generated for the PCPCH chan- nel for test purposes.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCODe:MODE on page 451

Time Delay

Enters the time delay of the signal of the selected user equipment compared to the signal of user equipment 1. Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:TDELay on page 451

UL-DTX .../ User Scheduling

(for instruments equipped with option R&S SMW-K83, UE 1 and DPCCH+DPDCH mode only)

Accesses the dialog for configuring an uplink discontinuous transmission (UL-DTX) or applying user scheduling, see Chapter 4.25, "UL-DTX/User Scheduling - UE", on page 163.

Remote command:

n.a.

Dynamic Power Control

(for UE 1 and DPCCH+DPDCH mode only)

(not supported in Baseband C/D)

Accesses the dialog for configuring the "Dynamic Power Control" settings, see Chapter 4.26, "Dynamic Power Control - UE", on page 168.

Remote command:

n.a.

Scheduling List

Accesses the dialog displaying the current scheduling per UE, see Chapter 4.27, "Scheduling List", on page 172.

4.24.2 Code Domain Graph - UE

To access the graphical display, select "3GPP FDD > User Equipment > UE > Code Domain"

The "Code Domain" dialog enables you to visually check the uplink signal.

Understanding the display information

The "Code Domain" display indicates the assigned code domain. The channelization code is plotted at the X axis; the colored bars indicate coherent code channels. The colors are assigned to fixed symbol rates; the allocation is shown below the graph. The relative power can be taken from the height of the bar. The symbols on so-called I- and Q-branches are spread independently. The channelization codes are fixed for the channels.

Use the Code Domain Graph to evaluate whether there is a code domain conflict or not; a domain conflict arises when the code domains of the active channels intersect. A code domain conflict is indicated by overlapping bars.

A conflict may occur only when the parameter "Force Channelization Code to I/Q" is activated.

4.24.3 Channel Settings

The settings and the dialogs of the individal channels are described in the corresponding sections, see:

- Chapter 4.28, "DPCCH Settings UE", on page 174
- Chapter 4.29, "DPDCH Settings UE", on page 180
- Chapter 4.30, "HS-DPCCH Settings UE", on page 185
- Chapter 4.31, "E-DPCCH Settings UE", on page 207
- Chapter 4.33, "E-DPDCH Settings UE", on page 220
- Chapter 4.34, "E-DCH Scheduling UE", on page 224

4.25 UL-DTX/User Scheduling - UE

UL-DTX and User Scheduling settings require option R&S SMW-K83.

- To access the "UL-DTX" settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
- 2. Select "Mode > DPCCH + DPDCH".
- 3. Select "UL-DTX / User Scheduling..."

4. Select "Mode > UL-DTX".

3GPP FDD A: U	E1/UL-DTX		_	×
General UL-DTX	Cycle 1 Configuration	Cycle 2	Config	uration
UL-DTX / U	ser Scheduling	Off		On
Mode		UL-D	тх	•
	Scheduling-			
E-DCH TTI		2 ms		•
Offset		0	Subfra	ames -
Inactivity Th	reshold for Cycle 2	1.	TTIs	•
Long Prean	nble Length	2-	Slots	•

The "UE /UL-DTX" contains the parameters for adjusting the UL-DTX settings and selecting a file containing user scheduling information.

The provided UL-DTX functionality is fully compliant with 3GPP TS 25.214. All dependencies from E-DCH transmissions, HARQ-ACK transmissions or CQI transmissions on the DPCCH are respected.

For the UL-DTX functionality, the dialog provides the settings necessary to configure the start offset, the threshold time for switching to UE-DTX cycle 2 and the DPCCH activity patterns for both UE-DTX cycle 1 and 2. It is possible to determine the frequentness of the DPCCH bursts, the DPCCH bursts length (without pre- and postamble) and to configure the length of the longer preamble for the UE-DTX cycle 2.

In this instrument, the signal generation starts with UE-DTX cycle 2. To trigger a switching to a UE-DTX cycle 1, activate the channel(s) E-DPCCH/E-DPDCH and configure the "E-DCH Scheduling" parameters.

To access the User Scheduling settings

The uplink user scheduling is a function that enables you to flexible configure the scheduling of the uplink transmission.

- To access the "User Scheduling" dialog, select "3GPP FDD > User Equipment > UE1 > Mode > DPCCH + DPDCH" and select "UL-DTX/User Scheduling"
- 2. In the "UL-DTX/User Scheduling", enable "Mode > User Scheduling".

UL-DTX/User Scheduling - UE

(not supported in Baseband C/D)

3GPP FDD A: UE1/UL	-DTX		_	×
General User Scheduling				
UL-DTX / User So	cheduling	Off(On
Mode		Use	r Schedı	uling -
User Scheduling	File			None

The instrument provides an interface for loading of externally created XML-like files with predefined file structure.

Use the Scheduling List to display the UL-DTX burst pattern and transmissions of E-DCH and HS-DPCCH, as well as the impact on the UL-DPCCH transmissions or the configured uplink user scheduling.

Detailed Information

For detailed information on the provided functions, like explanation of the UL-DTX principle, description of the user scheduling file format, possible interdependencies, refer to:

- Chapter 3.1.20, "Uplink discontinuous transmission (UL DTX)", on page 47
- Chapter 3.1.21, "Uplink User Scheduling", on page 49

For an example on how to use these functions, refer to:

- Chapter 5.3, "Configuring UL-DTX Transmission and Visualizing the Scheduling", on page 267
- Chapter 5.4, "Configuring and Visualizing the Uplink User Scheduling", on page 269

UL-DTX... / User Scheduling State

Depending on the selected "Mode", enables/disables:

- uplink discontinuous transmission (UL-DTX), i.e. uplink DPCCH gating Enabling the UL-DTX deactivates the DPDCH and the HSUPA FRC.
- using the user scheduling settings defined in the selected file.
 Enabling the Uplink Scheduling deactivates the HSUPA FRC.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:STATe on page 524

Mode

Selects the UL-DTX or User Scheduling function.

In Baseband C/D, the parameter is fixed to "UL-DTX".

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:MODE on page 524

User Scheduling File

Accesses the standard "File Select" function for selecting of a file containing user scheduling information. To perform standard file handling functions, e.g. to transfer externally created files to the instrument, use the "File Manager".

Files with user scheduling information use the predefined file extension *.3g_sch and follow a predefined file structure, see "File Structure" on page 50.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:USCH:CATalog? on page 527 [:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:USCH:FSELect on page 528 [:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:USCH:DELete on page 527

Scheduling

This section comprises the common settings for both UL-DTX cycles.

E-DCH TTI ← Scheduling

Sets the duration of a E-DCH TTI.

By enabled UL-DTX, the value configured with this parameter sets the value for the parameter "E-DCH TTI" in the "UE1 > E-DCH Scheduling" dialog.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:TTIEdch on page 524

Sets the parameter UE_DTX_DRX_Offset and determines the start offset in subframes of the first uplink DPCCH burst (after the preamble). The offset is applied only for bursts belonging to the DPCCH burst pattern; HS-DPCCH or E-DCH transmissions are not affected.

The parameter UE_DTX_DRX_Offset is used to calculate the first subframe in each UL DPCCH burst pattern.

- for DTX Cycle 1: (5*CFN-UE_DTX_DRX_Offset+Subframe#) MOD UE_DTX_Cycle_1 = 0
- for DTX Cycle 2: (5*CFN-UE_DTX_DRX_Offset+Subframe#) MOD UE_DTX_Cycle_2 = 0

The offset is used to shift the DPCCH burst pattern of the different UEs so that they have the DPCCH transmission phase in their DTX cycles at different times.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:OFFSet on page 525

Inactivity Threshold for Cycle 2 - Scheduling

Defines the number of consecutive E-DCH TTIs without an E-DCH transmission, after which the UE shall immediately move from UE-DTX cycle 1 to using UE-DTX cycle 2 (see Figure 5-2).

Note: In this implementation, the signal generation starts with UE-DTX cycle 2. To trigger a switching to a UE-DTX cycle 1, activate the channel(s) E-DPCCH/E-DPDCH and configure the "E-DCH Scheduling" parameters.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:ITHReshold on page 525

Long Preamble Length - Scheduling

Determines the length in slots of the preamble associated with the UE-DTX cycle 2.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:LPLength on page 525

Cycle 1 / Cycle 2 Configuration

Comprises the settings for configuring the frequentness of the DPCCH bursts and the DPCCH bursts length (without pre- and postamble).

3GPP FDD A: I	UE1/UL-DTX		_	×
	Cycle 1 Configuration	Cycle 2 Configur	ation	
DTX Cycle	1	4	- Sub	frames
DPCCH Bu	ırst Length 1	1	Sub	frames -
Preamble I	ength 1			2 Slots
Postamble	Length 1			1 Slot

DTX Cycle 1 / DTX Cycle 2 - Cycle 1 / Cycle 2 Configuration

Sets the offset in subframe between two consecutive DPCCH bursts within the corresponding UE-DTX cycle, i.e. determines how often the DPCCH bursts are transmitted (see Figure 5-2).

The UE-DTX cycle 2 is an integer multiple of the UE-DTX cycle 1, i.e. has less frequent DPCCH transmission instants.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:CYCLe<ch> on page 526

DPCCH Burst Length 1 / DPCCH Burst Length 2 \leftarrow Cycle 1 / Cycle 2 Configuration

Determines the uplink DPCCH burst length in subframes without the preamble and postamble, when the corresponding UE-DTX cycle is applied.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:BURSt<ch> on page 526

Preamble Length 1 / Preamble Length 2 \leftarrow **Cycle 1 / Cycle 2 Configuration** Displays the preamble length in slots, when the corresponding UE-DTX cycle is applied.

The preamble length is fixed to 2 slots.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:PREamble<ch>? on page 526

Postamble Length 1 / Postamble Length 2 \leftarrow **Cycle 1 / Cycle 2 Configuration** Displays the postamble length in slots, when the corresponding UE-DTX cycle is applied.

The postamble length is fixed to 1 slot.

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:POSTamble<ch>? on page 527

4.26 Dynamic Power Control - UE

To access this dialog, select "3GPP FDD > User Equipment > UE > Dynamic Power Control".

(not supported in Baseband C/D)

3GPP FDD A: UE1/Dynamic Power (Control					_	×
Dynamic Power Control		Off On					
Mode	External	•	Dyr 60	namic Pov	wer relative	to Start	Power
Connector	Local	Settings	40 딸 ²⁰				
Direction	Up	•	0 / Jower / 0 -20				
Power Step	1.00		-40				
Up Range	10.00	dB -	-60				
Down Range	10.00	dB •					
Assignment Mode for UL-DTX	Normal	•					
Also Control Other UEs		⊘ On					

In the "Dynamic Power Control" dialog, the power of the enhanced channels can be increased or decreased within the predefined dynamic range ("Up Range" + "Down Range") and with the predefined step size ("Power Step") with an external, internal or manual control signal.

Dynamic Power Control State

Activates or deactivates the "Dynamic Power Control".

With activated "Dynamic Power Control" the power of the enhanced channels can be increased or decreased within the predefined dynamic range ("Up Range" + "Down Range") and with the predefined step size ("Power Step") with an external, internal or manual control signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STATe on page 531

Mode

Selects the control signal for "Dynamic Power Control".

- "External" An external control signal is used for Dynamic Power Control. The external control signal has to be supplied at the local T/M 3 or global USER 6 connector, as defined with the parameter "Connector" on page 169.
- "By TPC Pattern"

The TPC pattern is used for "Dynamic Power Control". This selection corresponds to selection "(Mis)Use TPC" for not enhanced channels.

"Manual" The control signal is manually produced by pushing one of the buttons 0 or 1. The channel power is increased or decreased depending on the "Direction" setting by the set power step.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:MODE on page 530

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STEP: MANual on page 531

Connector

Determines the input connector the external control signal is supplied at.

In this firmware version, the "Global" connector is disabled.

See Chapter 3.2, "Routing and enabling an external control signal", on page 52.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:
CONNector on page 530
```

Direction

Selects the Dynamic Power Control mode.

"Up"

A high level of the control signal leads to an increase of channel power.

"Down" A high level of the control signal leads to a decrease of channel power.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:
DIRection on page 529
```

Power Step

Sets step width by which – with the "Dynamic Power Control" being switched on - the channel powers of the enhanced channels in the timeslot grid are increased or decreased within the set dynamic range ("Up Range" + "Down Range").

The start power of the channel is set in the "Channel Power" entry field of the menu.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl: STEP[:EXTernal] on page 532

Up Range/Down Range

Sets dynamic range by which – with "Dynamic Power Control" switched on – the channel powers of the enhanced channels can be increased. The resulting "Dynamic Power Control" dynamic range ("Up Range" + "Down Range") depends on the selected "Power Step" and is as follow:

- For "Power Step" < 1 dB, the dynamic range ("Up Range" + "Down Range") <= 30 dB
- For "Power Step" => 1 dB, the dynamic range ("Up Range" + "Down Range") <= 60 dB

Remote command:

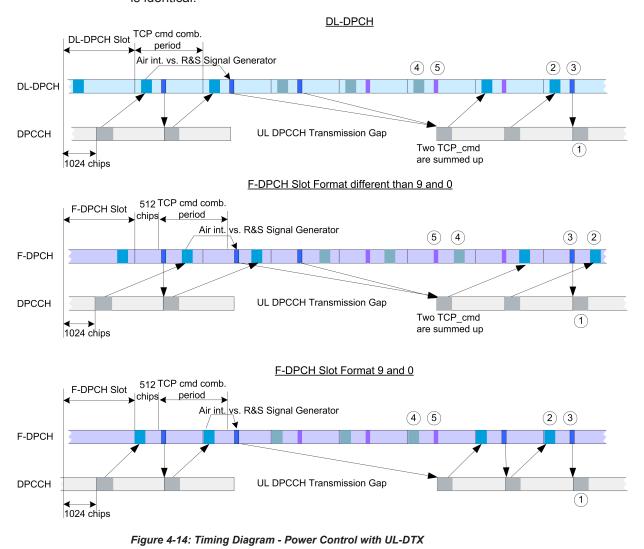
[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl: RANGe:UP on page 531 [:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl: RANGe:DOWN on page 531

Power Control Graph

Indicates the deviation of the channel power (delta POW) from the set power start value of the enhanced channels.

The graph is automatically displayed if "Dynamic Power Control > State > On".

Note: Since a realtime update of the window in the timeslot (= 0.667 ms) is not possible for reasons of speed, an update can be performed in a more coarse time interval. Fast channel power changes are not displayed but the settled state of the control loop can be recognized very easily.


Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl[: POWer]? on page 530

Assignment Mode for UL-DTX

The parameter is enabled only for activated UL-DTX... / User Scheduling State.

The power control recognizes the UL-DPCCH gaps according to 3GPP TS 25.214. Some of the TPC commands sent to the instrument over the external line or by the TPC pattern are ignored, whereas others are summed up and applied later. The processing of the TPC commands depends only on whether the BS sends the TPC bits on the F-DPCH with slot format 0/ slot format 9 (i.e. during the first 512 chips of the downlink slot) or not. It is not necessary to distinguish between the cases "DL-DPCH" and "F-DPCH Slot Format different than 9 and 0", as in both of these cases the downlink TPC commands would be sent (to a real UE via the air interface) later than in the first 512 chips of the downlink slot, and thus the treatment of the TPC commands by the UE is identical.

1 = Uplink Pilot

- 2 = TPC bits via air interface
- 3 = TPC command via binary feedback
- 4 = No need to send TPC bits via air interface; UE ignores any TPC bits
- 5 = No need to send TPC commands via binary feedback line; R&S SMW ignores any TPC commands

The feedback sent to the instrument corresponds to the parameter "TPC_cmd" defined in the 3GPP standard. It represents the TPC information of the last (already completed) "TPC command combining period", even if the TPC information of the ongoing "TPC command combining period" is already known by the BS prior to the feedback transmission over the binary feedback line (see figure).

Note: The provided external binary feedback has to be stable at least between 0.1 ms before and after the UL DPCCH slot boundary.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl: ASSignment on page 529

Also Control Other UEs

Enables you to dynamically control the power of the enhanced channels of all active UEs with the settings of UE1.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:AOUE on page 532

4.27 Scheduling List

Opens a display of the current uplink scheduling per UE.

Scheduling List

3GPP FDI) A: UE1/S	Scheduling	g List			_	×
Frame S	Start		1 0	Number Of	Frame	s	10
H: HARQ C: PCI/	-ACK info CQI infor	rmation mation i	ve in the sy is transmitt s transmitte because of t	ted in the s ed in the sy	mbol.	ngth.	Î
Frame Number:	Slot Number:	DPCCH Slots:	HS-DPCCH Symbols:	E-DCH TTI Number:	E-DPCC Slots:		
0	0 1	x x		° (1)	1	-	
	2	X		\mathbf{O}	i	i	
	3 4	X I		1	-	-	_
	5	10			1	1	
	6	i U		2	1	1	
	7	X			!		
	8 9	X X		3	X	X	_
	10	x o	-нннннннн	3	x a	x	
	11	x O) _H		x	x	
	12	X		4	Х	Х	
	13	X			X	X	
	14	X			x	x	
1	0	X		5	X	X	
	1	X			X	X	
	2	Х			Х	Х	
	3	X		6	X	X	
	4 5	X X			x x	X X	
	6	X		7	Î	Î	
	7	x		-	i	i	
	8	Х			Í	i	
	9	х		8	1	I.	
	10	x o	-ИНИНИНИИ		-	-	
	11 12	$\frac{x}{x}$ (3)	HCCCCCCCCC	9	-		
	12	X	C	9			
	14	X	-	-	i	i	
	-			6	•	•	

Figure 4-15: Example of Scheduling List (UE1)

- 1 = E-DCH TTI is three slots long, i.e. E-DCH TTI = 2ms
- 2 = DPCCH shows busts pattern, i.e. UL-DTX is activated
- 3 = HS-DPCCH is active and the scheduled HARQ-ACK and PCI/CQI messages have different patterns
- 4 = E-DPCCH and E-DPDCH are active; both channels have the same E-DCH scheduling
- 5 = ARB Sequence Length = 2 frames

Frame Start

Defines the start frame of the displayed UL scheduling.

Number of Frames

Defines number of frames for that the UL scheduling is displayed.

4.28 DPCCH Settings - UE

The "DPCCH" tab provides the parameters for configuring the dedicated physical control channel.

- To access the DPCCH channel settings, select "3GPP FDD > Link Direction > Uplink / Reverse"
- 2. Select "User Equipment > UE > Mode > DPCCH + DPDCH" and select "DPCCH".

3GPP FDD A: User Equipment1	1		_ ×
OGeneral Code Domain			н
	Pilot 6	TFCI 2	TPC 2
Power	0.00 dB		
DL-UL Timing Offset	1024 Chips	Channelization Code	Q/0
Slot Format #	0		0
FBI Mode	Off ·	FBI Pattern (bin)	0
TPC Mode	2 Bits	Read Out Mode	Continuous
TPC Data Source	All 0		z,

The dialog displays the channel structure and the available parameters.

In UE1, the DPCCH is generated in realtime (enhanced).

About the Dedicated Physical Channels

At the physical level, an uplink DPCH consists of the DPDCH (Dedicated Physical Data Channel) and the DPCCH (Dedicated Physical Control Channel); the channel characteristics are defined by the symbol rate.

The DPDCH transports the user data that is fed directly into the data field. The DPCCH carries the control fields (Pilot field; TPC = Transmit Power Control, FBI (Feedback Information) and TFCI = Transport Format Combination Indicator). DPDCH is grouped with DPCCH I/Q code multiplexing in accordance with 3GPP TS 25.211, see diagram below. The generation of an uplink reference measurement channel is described in Chapter 4.35, "Global Enhanced Channel Settings - UE1", on page 227.

DPCCH Settings - UE

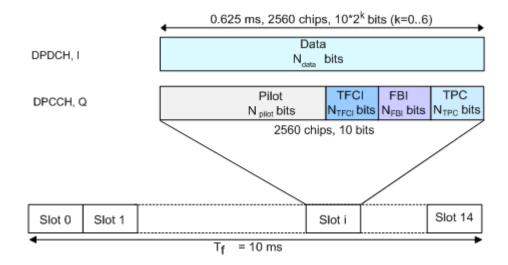


Figure 4-16: Structure of an uplink DPCH in the time domain

Channelization Code

Displays the channelization code and the modulation branch (I or Q) of the DPCCH. The code channel is spread with the set channelization code (spreading code). The standard assigns a fixed channelization code to the DPCCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCODe? on page 462

Power

Sets the power of the DPCCH channel.

Test cases defined in the 3GPP standard often use notation "Signaling values for βc and βd ". The quantization of the gain parameters is shown in the following table which is taken from 3GPP Spec 25.213 (left columns) and supplemented by the instrument-specific values (right column).

Signaling values for βc and βd	Quantized amplitude ratios βc and βd	Power to be set / dB
15	1.0	0.0
14	14/15	-0.60
13	13/15	-1.24
12	12/15	-1.94
11	11/15	-2.69
10	10/15	-3.52
9	9/15	-4.44
8	8/15	-5.46
7	7/15	-6.62
6	6/15	-7.96

DPCCH Settings - UE

Signaling values for βc and βd	Quantized amplitude ratios βc and βd	Power to be set / dB
5	5/15	-9.54
4	4/15	-11.48
3	3/15	-13.99
2	2/15	-17.52
1	1/15	-23.52
0	Switch off	Switch channel off or -80 dB

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:POWer on page 455

DL-UL Timing Offset

Sets the timing offset between the downlink and the uplink.

The timing offset determines the time delay in chips between the downlink signal timing and transmission of the uplink signal.

Note: The signals of all UEs have the same uplink slot timing. The parameters "DL-UL Timing Offset" are coupled and by changing this parameter for one of the UEs, the values for the other UEs are automatically adjusted.

- "1024 Chips" The uplink signal is generated according to the 3GPP specification. The signal is calculated synchronously to the downlink reference timing, i.e. the first uplink frame starts at chip position 1024 of the simulated signal.
- "0 Chips" No timing offset is applied, i.e. there is no timing delay between receipt of the downlink signal and transmission of the uplink signal. See also "To generate a continuos uplink signal composed of multiple separately generated uplink frames" on page 266.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TOFFset on page 457

Slot Format

Selects the slot format.

The slot format defines the structure of the DPCCH slots and the control fields. Depending on the selected slot format, the slot structure is displayed.

Slot formats 0 to 4 are available for the DPCCH channel as defined in the 3GPP Release 7 specification TS 25.211.

Note: The former slot formats 4 and 5 according to 3GPP Release 4 specification TS 25.211 are not supported.

The slot format selection adjusts the DPCCH slot structure according to the 3GPP specification. However, it is also possible to adjust this structure by configuration of each of the control fields separately.

The table below gives an overview of the cross-reference between the slot format and the structure of the DPCCH slot.

DPCCH Settings - UE

Slot Format #	NPilot, bits	NTPC, bits (TPC Mode)	NTFCI, bits (Use TFCI)	NFBI, bits (FBI Mode)
0	6	2	2	0
1	8	2	0	0
2	5	2	2	1
3	7	2	0	1
4	6	4	0	0

"Slot format 0"

"Slot format 0"	Pilot 6		Т	FCI 2	TPC 2
	"FBI Mode" = Off, i.e. no FBI field "TFCI Mode" = 2 bits "Use TFCI" = On, i.e. TFCI field = 2	? bits			
"Slot format 1"	Pilot 8				TPC 2
	"FBI Mode" = Off, i.e. no FBI field "TFCI Mode" = 2 bits "Use TFCI" = Off, i.e. no TFCI field				
"Slot format 2"	Pilot 5	TFC 2		FBI 1	TPC 2
	"FBI Mode" = 1 bit "TFCI Mode" = 2 bits "Use TFCI" = On, i.e. TFCI field = 2	bits			
"Slot format 3"	Pilot 7			FBI 1	TPC 2
	"FBI Mode" = 1 bit "TFCI Mode" = 2 bits "Use TFCI" = Off, i.e. no TFCI field				
"Slot format 4"	Pilot 6				TPC 4
	(enabled only for instruments equip "FBI Mode" = Off, i.e. no FBI field "TFCI Mode" = 4 bits "Use TFCI" = Off, i.e. no TFCI field	ped with	n R&S :	SMW-K8	33)
Remote comma	nd:				

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat on page 456

Use TFCI

Activates the TFCI (Transport Format Combination Indicator) field.

The status of the TFCI field is determined by the "Slot Format" set. A change leads automatically to an adjustment of the slot format.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI:STATe on page 456

TFCI

Enters the value of the TFCI field (Transport Format Combination Indicator) of the DPCCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI on page 456

FBI Mode

Selects the FBI (Feed Back Information) mode.

The FBI mode is determined by the "Slot Format" set. A change in the FBI mode leads automatically to an adjustment of the slot format.

Note: The former 2-bits long FBI Mode according to 3GPP Release 4 specification TS 25.211 is not supported.

"Off" The FBI field is not in use.

"1 Bit" The FBI field with a length of 1 bit is used.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE on page 455

FBI Pattern (bin)

Enters the bit pattern for the FBI field.

The FBI field is filled cyclically with a pattern of up to 32 bits in length.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:PATTern on page 455

TPC Mode

Selects the TPC (Transmit Power Control) mode.

The TPC mode is determined by the "Slot Format" set. A change in the TPC mode leads automatically to an adjustment of the slot format.

"2 Bits" A TPC field with a length of 2 bits is used.

"4 Bits" (enabled only for instruments equipped with R&S SMW-K83) A TPC field with a length of 4 bits is used. A 4 bits long TPC field can be selected, only for Slot Format 4 and disabled FBI and TFCI fields.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE on page 459

TPC Data Source

Defines the data source for the TPC field of the DPCCH channel.

The following standard data sources are available:

- "All 0, All 1" An internally generated sequence containing 0 data or 1 data.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern. • "Data List / Select TPC Data List"

A binary data from a data list, internally or externally generated.

Select "Select TPC Data List" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the standard "File Manager" function to transfer external data lists to the instrument.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.

See also:

- section "Modulation Data" in the R&S SMW user manual.
- section "File and Data Management" in the R&S SMW user manual.
- section "Data List Editor" in the R&S SMW user manual.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA on page 457
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:PATTern
on page 458
```

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:DSELect on page 458

TPC Read Out Mode

Defines the TPC data usage.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. With all read out modes, one bit is taken from the data stream for the TPC field for each slot and entered into the bit stream several times (depending on the symbol rate). The difference between the modes lies in the usage of the TPC bits.

These different modes can be used, for example, to deliberately set a DPCH of a base station to a specific output power (e.g. with the pattern 11111) and then let it oscillate around this power (with Single + alt. 01 and Single + alt. 10). This then allows power measurements to be carried out at the base station (at a quasi-constant power). Together with the function "(Mis-)Use TPC for output power control" (see below), "TPC Read Out Mode" can also be used to generate various output power profiles.

"Continuous:" The TPC bits are used cyclically.

- "Single + All 0" The TPC bits are used once, and then the TPC sequence is continued with 0 bits.
- "Single + All 1" The TPC bits are used once, and then the TPC sequence is continued with 1 bits.
- "Single + alt. The TPC bits are used once and then the TPC sequence is continued 01" with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).
- "Single + alt. The TPC bits are used once and then the TPC sequence is continued 10" with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:READ on page 460

Misuse TPC for Output Power Control

(available for UE2, UE3 and UE4 only)

Defines "mis-" use of the TPC data.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. If "(Mis-) use TPC for output power control" is activated, the specified pattern is misused, in order to vary the intrinsic transmit power over time. A bit of this pattern is removed for each slot in order to increase (bit = "1") or reduce (bit = "0") the channel power by the specified power step ("Power Step"). The upper limit for this is 0 dB and the lower limit -60 dB. The following envelope is produced at a channel power of 0 dB, power step 1.0 dB and pattern "00111010000011" and TPC Pattern Read Out Mode Continuous:

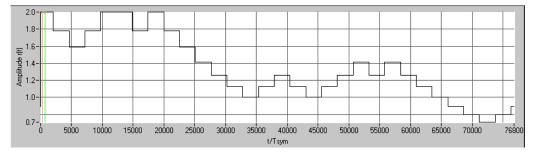


Figure 4-17: Dynamic change of channel power (continuous)

Note: Power control works both on the DPCCH and all the active DPDCHs. The change in power is always carried out (as stipulated in the standard) at the start of the slot pilot field

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MISuse on page 458

TPC Power Step

(available for UE2, UE3 and UE4 only)

Sets the step width of the power change in dB for "(Mis-) use TPC for output power control".

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:PSTep on page 459

4.29 DPDCH Settings - UE

 To access the DPDCH channel settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"

DPDCH Settings - UE

2. Select "DPDCH".

GPP FDD A: User Equipmer	it1						_
General Code DPCCH OPDCH OHS-DPCCH OE-DPDCH E-DCH							
Data 40							
State Off On Channel Power 0.00 dB -							
Overall Symbol Rate	60 ks	ps ·	Force Cha	nnelization (Code To I / O		
Global Enhanced Channels							
	1	2	3	4	5	6	
Channel Type	DPDCH	DPDCH	DPDCH	DPDCH	DPDCH	DPDCH	
Symbol Rate / State	60	Off	Off	Off	Off	Off	
Channelization Code	I / 16						
DPDCH Data Source	PN 9						
DPDCH Pattern	0						
DPDCH Data List	None						
DCCH Data Source		Channel	Coding	Off			
DCCH Pattern							

The dialog contains the general parameters required for configuring the channel. The channel table allows you to configure th individual parameters.

4.29.1 DPDCH Common Settings

State (DPDCH)

Activates or deactivates all the DPDCH channels.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:STATe on page 482

Channel Power

Sets the channel power in dB.

The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed, all the power data is relative to "Level".

Note: The uplink channels are not blanked in this mode (duty cycle 100%).

Test cases defined in the 3GPP standard often use notation "Signaling values for βc and βd ". The quantization of the gain parameters is shown in the following table which is taken from 3GPP Spec 25.213 (left columns) and supplemented by the instrument-specific values (right column).

DPDCH Settings - UE

Signaling values for βc and βd	Quantized amplitude ratios βc and βd	Power to be set / dB
15	1.0	0.0
14	14/15	-0.60
13	13/15	-1.24
12	12/15	-1.94
11	11/15	-2.69
10	10/15	-3.52
9	9/15	-4.44
8	8/15	-5.46
7	7/15	-6.62
6	6/15	-7.96
5	5/15	-9.54
4	4/15	-11.48
3	3/15	-13.99
2	2/15	-17.52
1	1/15	-23.52
0	Switch off	Switch channel off or -80 dB

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:POWer on page 482

Force Channelization Code To I/0

Sets the channelization code to I/0.

This mode can only be activated if the "Overall Symbol Rate < 2 x 960 kbps".

It is provided for test purposes. Using an oscilloscope, the data bits of the DPDCH are visible on the I/Q signal for the follwoing settings:

- "Force Channelization Code to I/Q > On"
- "Scrambling Code Mode > Off"
- "DPCCH Channel Power = 80 dB"

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:FCIO on page 481

Overall Symbol Rate

Sets the overall symbol rate of all the DPDCH channels.

The structure of the DPDCH channel table depends on this parameter. The overall symbol rate determines which DPDCHs are active, which symbol rate they have and which channelization codes they use (see Table A-2).

DPDCHs that are not active by virtue of the overall rate are also disabled for operation.

Note: Up to an overall rate of 960 ksps, only DPDCH 1 is active, its symbol rate is the same as the overall symbol rate and the channelization code is the same as spreading factor/4 (spreading factor = chip rate / symbol rate).

With an overall symbol rate greater than 960 ksps, all the active DPDCH channels have the symbol rate 960 ksps.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:ORATe on page 481

Global Enhanced Channels

Accesses the dialog for configuring all the enhanced channel settings of user equipment UE1, see Chapter 4.35, "Global Enhanced Channel Settings - UE1", on page 227.

Remote command: n.a.

4.29.2 Channel Table

The channel table allows you to configure the individual parameters for the DPDCH channels. The structure of the currently selected channel is displayed graphically in the table header.

The number of active channels depends on the selected overall symbol rate. You can select the data sources for the individual channels. The remaining parameters are only displayed and their values depend also on the overall symbol rate. See also Table A-2.

Channel Number

Displays the channel number.

Remote command: n.a. (the channel is selected by the suffix at keyword CHANnel<n>)

Channel Type

Displays the channel type. Remote command:

n.a.

Symbol Rate / State

Displays the symbol rate and the state of the DCDCH channel.

The symbol rate and the state of channel 2 to 6 are dependent on the overall symbol rate set and cannot be modified.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:SRATe?
on page 481

Channelization Code

Displays the channelization code and the modulation branch (I or Q) of the DPDCH channel.

The channelization code is dependent on the overall symbol rate set and cannot be modified.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:CCODe? on page 479

DPDCH Data Source

For UE2, UE3 and UE4 and UE1 without channel coding, selects the data source for the DPDCH channel.

When channel coding is active, the data source for the DTCH1 component in the transport layer is selected here. In this situation, the display reads "DTCH data Source" and the "DCCH Data" entry field is enabled for selecting the data source of the DCCH channel. The data sources of the other DTCH channels can be set in the "Global Enhanced Channel Settings > Transport Channel" dialog, see Chapter 4.35, "Global Enhanced Channel Settings - UE1", on page 227.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

PNxx"

An internally generated pseudo-random noise sequence.

"Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA
on page 479

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA: PATTern on page 480

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:

DATA: DSELect on page 505

DCCH Data Source

For UE1 for enhanced channels with active channel coding, selects the data source for the DCCH component.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

- "PNxx"
 - An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

• "Data List/Select DList"

A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

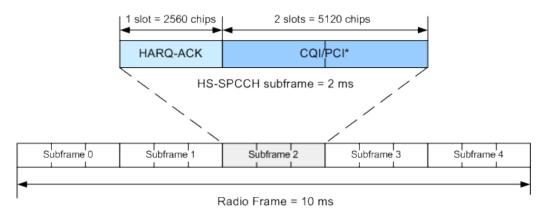
4.30 HS-DPCCH Settings - UE

- To access the HS-DPCCH channels settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "HS-DPCCH"

3GPP FDD A: User Equipment1			_ ×
General Code DPCC		DE-DPCCH DE-DPDCH	E-DCH
HARQ-ACK (Slots	s)	PCI / CQI (Slots) 2	Î
State	Off On	Power	0.00 dB -
Compatibility Mode	Release 8 and Later		
Start Delay	101 *256 Chips -	MIMO Mode	V On
Inter TTI Distance (Interval)	5 Subframes -	Secondary Cell Enabled	1
Channelization Code	Q / 64	Secondary Cell Active	0
Slot Format	0 (15ksps)		ļ

3GPP	FDD A: l	Jser Equ	pmen	t1									_	×
0	General	Cod Don		DPCCH		осн 🖸	HS-DPC	сн	OE-DPCC	HOE-	DPDCH	E-DCH		
\square							— HARG) - A	СК					
Nu	mber of	Rows						2	HARQ-A	ACK Rep	oeat After	r	4 Interva	als -
	HARQ-A From Interval	CK HAR T Inte	ō	HS-DP HARQ-/ 1		-DPCCH RQ-ACK 2	1 HS-DPCCI HARQ-ACI 3		HS-DPCCH 2 HARQ-ACK 4	Pow Offs /dB				×
0		0	1		D					0.0				
1		3	3	B NN/I	NN					0.0				
							PCI	001	2I ———					
Nu	mber of	Rows						2	PCI/CQ	l Repeat	After		3 Interva	als -
	PCI/CQI From Interval	PCI/CQI To Interval	PCI/		PCI/CQI 1 Content	HS-DPC PCI/CG Type	PCI/C	QI 2	HS-DPCCH 2 PCI/CQI 3 Type	PCI/CQI 3 Content	HS-DPC0 PCI/CQI Type			fs
0	C	C	C	хта										
1	1	1	A (D	ual TB)	Config								C	0.0
	The second s													
Sug	Suggested / Current ARB Seq. Length 12 / 1 Adjust ARB Sequence Length									djust AF	≀B Seque	ence Len		

The dialog contains the general parameters required for configuring the channel, and displays the channel structure.


Real time signal generation

To enable real time signal generation for UE1, select "3GPP FDD > User Equipment > UE1> HS-DPCCH" and select "Compatibility Mode > Up to Release 7" or "Compatibility Mode > Release 8 and Later RT"

4.30.1 About HS-DPCCH

HS-DPCCH Structure

The HS-DPCCH carries uplink feedback signaling related to the accuracy and quality of downlink HS-DSCH transmission. Hybrid-ARQ Acknowledgment (HARQ-ACK) is transmitted in the first subframe slot, Channel-Quality Indication (CQI) and in case of UE configured in MIMO mode also Precoding Control Indication (PCI) are transmitted in the second and third subframe slot. Only one HS-DPCCH may be transmitted on each radio link. The HS-DPCCH can only exist together with an uplink DPCCH.

*) PCI for UE configured in MIMO mode only

Figure 4-18: Structure of an uplink HS-DPCCH in the time domain

The HS-DPCCH subframe starts $256 \times m$ chips after the start of an uplink DPCCH slot with *m* selected such that the subframe transmission starts within the first 0-255 chips after 7.5 slots following the end of the received HS-PDSCH sub-frame.

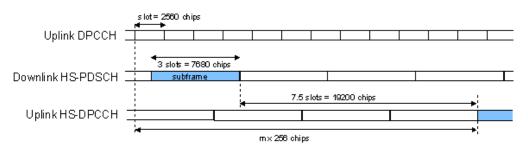


Figure 4-19: Timing offset between the uplink DPCCH, the HS-PDSCH and the HS-DPCCH at the UE

HS-DPCCH Power

According to 3GPP TS 25.214, the uplink HS-DPCCH power shall be estimated for each HS-DPCCH slot.

In this implementation, the channel power can be set individually for each case of feedback signaling and UE mode as a combination of the CQI Power (parameter "Power") and the corresponding "Power Offset" (see the tables below). Since the feedback signaling can be configured per slot of TTI that carries HS-DPCCH, the channel power is also calculated on a slot basis.

Table 4-8: Calculating of the HARQ-ACK power

Mode	HARQ-ACK	Offset Parameter	Resulting Power				
Compatibility Mode = Up to Release 7							
Normal	ACK/NACK Pattern	Power Offset ACK	Power + Power Offset ACK				
		Power Offset NACK	Power + Power Offset NACK				
	Single ACK	Power Offset ACK	Power + Power Offset ACK				

Mode	HARQ-ACK	Offset Parameter	Resulting Power					
	Single NACK	Power Offset NACK	Power + Power Offset NACK					
MIMO	TB1: ACK, TB2: ACK	Power Offset ACK/ACK	Power + Power Offset ACK/ACK					
	TB1: ACK, TB2: NACK	Power Offset ACK/NACK	Power + Power Offset ACK/NACK					
	TB1: NACK, TB2: ACK	Power Offset NACK/ACK	Power + Power Offset NACK/ACK					
	TB1: NACK, TB2: NACK	Power Offset NACK/NACK	Power + Power Offset NACK/ NACK					
	Compatibility Mode =							
	Release 8 and Later (RT)							
all	HARQ-ACK	Power Offset HARQ-ACK	Power + Power Offset HARQ-ACK					
	•							

Table 4-9: Calculating the PCI/CQI power

Mode	CQI	Туре	CQI Parameter	Offset Parameter	Resulting Power
		•	Compatib. Mode=	Up to Release 7	
Normal	-		CQI	-	Power
MIMO	CQI Type Single TB A Double TB		CQIs	Power Offset CQI Type A	Power + Power Offset CQI Type A
			CQI1 and CQI2		
		•	Rel. 8 and Later (RT)		
Normal	CQI		CQI		
DC- HSDPA non MIMO	Comp. CQI		CQI1 and CQI2	Power Offset PCI/CQI Power + Pow Offset PCI/CQ	
MIMO	CQI Type Single TB A		CQIs		
		Double TB	CQI1 and CQI2		

4.30.2 HS-DPCCH Common Settings

The displayed channel structure depends on whether the UE is working in MIMO mode or not.

State (HS-DPCCH)

Activates or deactivates the HS-DPCCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:STATe on page 461

Power (HS-DPCCH)

Sets the power in dB.

- In case of "Compatibility Mode > Release 8 and Later"/"Compatibility Mode > Release 8 and Later RT", this parameter represents the reference power, relative to that the power used during the HARQ-ACK slot and the power used during the PCI/CQI slots are calculated.
- While working in a "Compatibility Mode > Up to Release 7", this parameter represents the CQI Power of a UE configured in a normal mode or of a UE configured in MIMO mode and sending CQI Type B report. The CQI Power is the reference power, relative to that the power used during the HARQ-ACK slot and the power used during the PCI/CQI slots of a UE configured in MIMO mode and sending CQI Type A reports are calculated.

The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed, all the power data is relative to the "Level" display.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer on page 461

Compatibility Mode (HS-DPCCH)

Switches between the following modes:

"Up to Release 7"

Switches to the display of the HS-DPCCH settings provided for backwards compatibility.

"Release 8 and Later"

The concept of the graphical user interface for the configuration of HS-DPCCH has been adapted to support simultaneous DC-HSDPA and MIMO operation, as required in 3GPP Release 9 onwards. This mode is disabled, if Dynamic Power Control State is On.

"Release 8 and Later RT"

(not supported in Baseband C/D)


Enables generation of the HS-DPCCH in real-time even for Release 8/9 content. Real-time signals are useful for complex HS-DPCCH scheduling and are required while using dynamic power control with the HS-DPCCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPatibility
on page 461

Start Delay

Sets the delay between the uplink HS-DPCCH and the frame of uplink DPCH.

Thus, the channel can be synchronized with the associated downlink HS-PDSCH.

The delay is entered as a multiple m of 256 chips according to TS 25.211 7.7:

 $m = (T_{TX diff}/256) + 101$

where $T_{TX \text{ diff}}$ is the difference in chips ($T_{TX \text{ diff}} = 0, 256,, 38144$).

The value range of m is 0 to 250 (2 frames +1024 chips)

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SDELay on page 462

Inter TTI Distance (Interval)

Selects the distance between two HSDPA packets. The distance is set in number of subframes (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.

Regarding the HS-DPCCH uplink transmission, this parameter determines where HS-DPCCH transmissions are possible in principle. In order to have actual HS-DPCCH transmissions, HARQ-ACK and/or PCI/CQI transmissions have to be scheduled as described in 4.30.3, 4.30.4 and 4.30.5

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:TTIDistance
on page 462

Channelization Code (HS-DPCCH)

Displays the channelization code and the modulation branch (I or Q) of the HS-DPCCH.

The code channel is spread with the set channelization code (spreading code). The channelization code of the high speed channel depends on the number of activated DPDCHs, i.e. on the overall symbol rate.

For "Secondary Cell Enabled \geq 4", two HS-DPCCHs, i.e. two channelization codes are used.

Example:

Enable the following settings:

- "DPDCH State = On"
- "DPDCH Overall Symbol Rate = 60 ksps"
- "HS-DPCCH State = On"
- "Secondary Cell Enabled = 0" The used "HS-DPCCH > Channelization Code" is Q / 64. Open the "User Equipment > Code Domain" dialog (see Figure 4-20).
- Enable "Secondary Cell Enabled = 4"

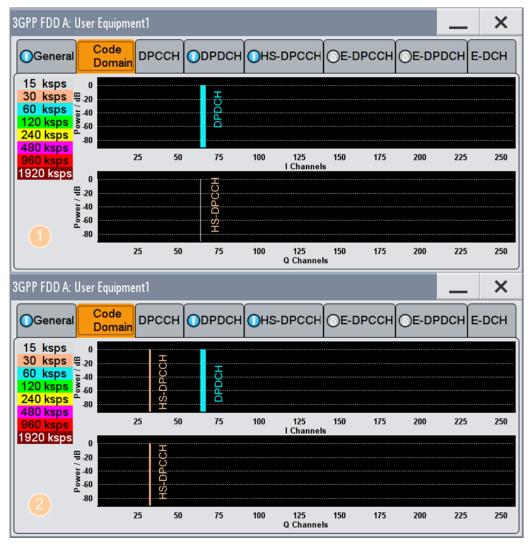


Figure 4-20: Impact of "Secondary Cell Enabled ≥ 4" on the used channelization code

- 1 = The display confirms, that the DPDCH uses a 60 ksps symbol rate and a channelization code on the I channel. The HS-DPCCH is displayed with a symbol rate of 15 ksps (i.e "Slot Format 0") on the Q channel.
- 2 = The "Code Domain" dialog displays the two HS-DPCCHs, one on each of the I and Q channels; the used symbol rate is 30 ksps, i.e the "Slot Format 1" is used.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCODe? on page 462

Slot Format

Displays the used slot format.

The specified slot format for "Secondary Cell Enabled < 2" is "Slot Format 0 (15 ksps)". With more than 2 secondary cells or with 2 seconrady cells and "MIMO Mode = On", the "Slot Format 1 (30 ksps)" is required, i.e. slot format with higher symbol rate.

See also Figure 4-20.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SFORmat? on page 472

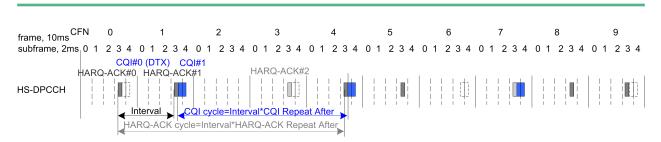
4.30.3 HS-DPCCH Scheduling Table (Release 8 and Later/Release 8 and Later RT)

This settings are available for "Compatibility Mode > Release 8 and Later/Release 8 and Later RT".

MIMO settings and DC-HSDPA/4C-HSDPA/8C-HSDPA settings are available for configuration only for instruments equipped with option R&S SMW-K83.

The settings available in this dialog allow you to adjust the HS-DPCCH signal of a UE configured for normal operation, DC-HSDPA or 4C/8C-HSDPA operation, MIMO mode or for a simultaneous secondary cells + MIMO operation.

The HS-DPCCH structure can be configured with the parameters "Inter TTI Distance", "Number of Table Rows", "From/To" and "Repeat After", as well as by configuring the HARQ-ACK and CQI/PCI information by means of the parameters of the HS-DPCCH scheduling tables. The scheduling for the HARQ-ACK and PCI/CQI reports can be performed independently; different repetition cycles can be specified.


Example: HS-DPCCH Scheduling

The following is a simple example intended to explain the principle. Configured is an HS-DPCCH scheduling in "MIMO Mode = Off" and with "Secondary Cell Enabled = 0".

Parameter	Value
Start Delay	101 * 256 Chips
Compatibility Mode (HS-DPCCH)	Release 8 and Later RT
Inter TTI Distance (Interval)	5 Subframes
HARQ-ACK Scheduling	
Number of Rows	2
HARQ-ACK Repeat After	4 Intervals
Row#0	

Parameter	Value
HARQ-ACK From Interval/ HARQ-ACK To Interval	from HARQ-ACK Interval 0 to 1
HS-DPCCH 1/2, HARQ-ACK 1/2/3/4	A
Row#1	
HARQ-ACK From Interval/ HARQ-ACK To Interval	from HARQ-ACK Interval 3 to 3
HS-DPCCH 1/2, HARQ-ACK 1/2/3/4	N
PCI/CQI Scheduling	
Number of Rows	2
PCI/CQI Repeat After	3 Intervals
Row#0	
PCI-CQI From Interval/ PCI-CQI To Interval	from PCI/CQI Interval 0 to 0
HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type	DTX
Row#1	
PCI-CQI From Interval/ PCI-CQI To Interval	from PCI/CQI Interval 1 to 1
HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type	CQI
CQI/CQI _S /CQI ₁ /CQI ₂	5

Use the Scheduling List to display the configured scheduling.

Figure 4-21: Example of HS-DPCCH Scheduling

"Inter TTI Distance (Interval)" = 5 subframes "HARQ-ACK Cycle" = "Inter TTI Distance (Interval)"*"HARQ-ACK Repeat After = 5*4=20 Intervals" "CQI Cycle" = "Inter TTI Distance (Interval)"*"CQI Repeat After = 5*3=15 Intervals"

MIMO Mode

Enables/disables working in MIMO mode for the selected UE.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe on page 472

Secondary Cell Enabled

Enables the selected number of secondary cells for the selected UE. Secondary cells are used for working in DC-/4C/8C-HSDPA mode.

See also Chapter 3.1.16, "Dual Cell HSDPA (DC-HSDPA)", on page 42, Chapter 3.1.17, "HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA", on page 46 and Chapter 5.5, "How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests", on page 271.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ENABled on page 473

Secondary Cell Active

Sets the number of active secondary cells for the selected UE.

See also Chapter 3.1.16, "Dual Cell HSDPA (DC-HSDPA)", on page 42, Chapter 3.1.17, "HS-DPCCH Extension for 4C-HSDPA and 8C-HSDPA", on page 46 and Chapter 5.5, "How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests", on page 271.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ACTive on page 473

HARQ-ACK

Comprises the parameters provided for the independent configuration of the HARQ-ACK scheduling.

Number of Rows - HARQ-ACK

Determines the number of the rows in the HARQ-ACK scheduling table.

Each row represents one TTI interval, as configured with the parameter Inter TTI Distance (Interval). The parameters set in the table are read out cyclically.

See also Figure 4-21.

Remote command: [:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:ROWS on page 473

HARQ-ACK Repeat After - HARQ-ACK

Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.

The parameter together with the parameter Inter TTI Distance (Interval) defines the repetition cycle of the HARQ-ACK pattern:

HARQ-ACK cycle = Inter TTI Distance (Interval) * HARQ-ACK Repeat After

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:REPeat
on page 478

HARQ-ACK From Interval/ HARQ-ACK To Interval - HARQ-ACK

Defines the beginning/end of the HARQ-ACK transmissions inside the HARQ-ACK cycle (specified by HARQ-ACK Repeat After). The range is specified in multiples of intervals, determined by Inter TTI Distance (Interval).

See also Figure 4-21.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM on page 474

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO on page 474

HS-DPCCH 1/2, HARQ-ACK 1/2/3/4 ← HARQ-ACK

Per HS-DPCCHs, sets the information transmitted during the HARQ-ACK slots of the TTIs during the corresponding specified "HARQ-ACK From/To" range.

Two HS-DPCCHs are transmitted, if "Secondary Cell Enabled > 3".

The number of enabled HARQ-ACKs depends on the combination of enabled and active secondary cells. In this implementation, the activated cells are mapped from left to right.

The processing of HS-DPCCH is defined for four different main cases (see Table 4-10).

Mode	"MIMO Mode"	"Secondary Cell Enabled"	"Secondary Cell Active"	Comment
Normal operation	Off	0	0	-
MIMO only	On	0	0	see Chapter 3.1.15.5, "MIMO uplink control channel support", on page 40
DC-HSDPA only 4C/8C-HSDPA only	Off	1 27	0, 1 2 7	see Chapter 3.1.16.1, "DC-HSDPA Data Acknowledgement (non MIMO mode)", on page 43 see Chapter 3.1.17, "HS-DPCCH Extension for 4C-HSDPA and 8C- HSDPA", on page 46
DC-HSDPA +MIMO 4C/8C-HSDPA +MIMO	On	1 27	1 27	see Chapter 3.1.16.2, "DC-HSDPA + MIMO", on page 45 see Chapter 3.1.17, "HS-DPCCH Extension for 4C-HSDPA and 8C- HSDPA", on page 46

Table 4-10: HS-DPCCH processing

Meaning of the used abbreviations:

- A indicates an ACK response; N an NACK
- D means no transmission (DTX), i.e. no transport block was sent on the corresponding HS-DSCH downlink transmission.
- Single letter, e.g. an A stands for a response to a single scheduled transport block (TB)
- A letter's couple, e.g. an AA indicates two MIMO streams, i.e. the response on two TBs
- *I* is a separation mark between the response to the serving and secondary cells, where the feedback related to the serving HS-DSCH cell is the one before the divider sign.

Example: Understanding the syntax

For better representation of the principle, the sending of ACK only messages is assumed.

HARQ-ACK value	Description		
A/A/A	MIMO Mode = Off (single letters only)		
	Three active cells, one serving and two secondary serving cells; one single TB transmission per cell		
AA/A	MIMO Mode = On		
	Two active cells, one seving with two MIMO streams and one secondary serving cell with single TB transmission		
AA/AA	MIMO Mode = On		
	Two active cells, each transmitting two MIMO streams		
AA/AA, AA/D	MIMO Mode = On		
	Three active cells, each transmitting two MIMO streams		
AA/AA, AA/AA	MIMO Mode = On		
	Four active cells, each transmitting two MIMO streams		
"DTX"	No HARQ-ACK feedback information is sent.		
"A, N"	Selects an ACK or NACK response to a single scheduled transport block.		
"AA, AN, NA, NI	٧"		
	(MIMO Mode On, Secondary Cell Enabled/Active = 0) Selects the response to two scheduled transport blocks, i.e. feedback on the primary and secondary stream in a dual stream transmission.		
"A/D, N/A, (di	fferent combinations possible)" (MIMO Mode Off, "Secondary Cell Enabled < 2") Selects the response to a single scheduled transport block on each o the serving and secondary serving HS-DSCH cells.		
"A/D/D, N/D/D, .	(different combinations possible)" (MIMO Mode Off, "Secondary Cell Enabled = 2") Selects the response to a single scheduled transport block on each of the serving and the two secondary serving HS-DSCH cells.		
"AN/NN, D/AA, (different combinations possible)" (MIMO Mode On, Secondary Cell Active On) Selects the response to two scheduled transport blocks on each the serving and secondary serving HS-DSCH cells.			
"PRE, POST"	PRE or POST is sent in the HARQ-ACK slots of the corresponding TTI.		
Remote comma	nd:		
[:SOURce <hw></hw>]:BB:W3GPp:MSTation <st>:DPCCh:HS:ROW<ch0>:HACK<di></di></ch0></st>		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK<di>on page 474

Power Offset HARQ-ACK - HARQ-ACK

Sets the power offset of a HARQ-ACK response relative to the "Power".

The power used during all HARQ-ACK slots during the corresponding specified "HARQ-ACK From/To" range is calculated as:

 $P_{HARQ-ACK} = Power + P_{off_HARQ-ACK}$

The value range is -10 dB to 10 dB.

The parameter is enabled for HARQ-ACK different than DTX.

While generating the HS-DPCCH signal in real-time, the HARQ-ACK power offsets of all configured HARQ-ACK responses are set to the same value.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHAck on page 475

PCI / CQI

Comprises the parameters provided for the independent configuration of the PCI/CQI reports scheduling.

Number of Rows - PCI / CQI

This parameter determines the number of the rows in the PCI / CQI scheduling table.

Each row represents one TTI interval, as configured with the parameter Inter TTI Distance (Interval). The parameters set in the table are read out cyclically.

See also Figure 4-21.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:ROWS on page 473

PCI/CQI Repeat After - PCI / CQI

Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.

The parameter together with the parameter Inter TTI Distance (Interval) defines the repetition cycle of the PCI/CQI pattern:

PCI/CQI cycle = Inter TTI Distance (Interval) * PCI/CQI Repeat After

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:REPeat
on page 478

PCI-CQI From Interval/ PCI-CQI To Interval - PCI / CQI

Defines the beginning/ end of the PCI/CQI transmissions inside the PCI/CQI cycle (specified by PCI/CQI Repeat After). The range is specified in multiples of intervals, defined by Inter TTI Distance (Interval).

See also Figure 4-21.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:FROM on page 476

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO on page 476

HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type ← PCI / CQI

Per HS-DPCCH, selects the type of the PCI/CQI report (see CQI Reports: Type A and Type B and CQI reports: CQI1 and CQI2).

Two HS-DPCCHs are required, if "Secondary Cell Enabled > 3".

The number of enabled PCI/CQIs depends on the number of required HS-DPCCHs and the "Slot Format". In this implementation, the activated cells are mapped from left to right.

The available values depend on the state of the parameters "MIMO Mode", "Secondary Cell Emabled" and "Secondary Cell Active".

"DTX" No PCI/CQI feedback information is sent.

"CQI" Selects CQI report for the normal operation.

"Type A Single TB"

(MIMO Mode On) Selects CQI Type A report with information that 1 transport block is preferred.

"Type A Double TB"

(MIMO Mode On)

Selects CQI Type A report with information that 2 transport blocks are preferred.

"Type B" (MIMO Mode On)

Selects CQI Type B report.

"Composite CQI"

(MIMO Mode Off, "Secondary Cell Enabled = Secondary Cell Active ≤ 2")

Selects a Composite CQI, constructed from the two individual reports CQI1 and CQI2 of the serving and secondary serving HS-DSCH cell.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>: TYPE on page 476

Power Offset PCI/CQI ← PCI / CQI

Sets the power offset $P_{off_{PCI/CQI}}$ of all PCI/CQI slots during the corresponding specified PCI/CQI From/To range relative to the Power.

The power P_{PCI/CQI} used during the PCI/CQI slots is calculated as:

P_{PCI/CQI} = Power + P_{off_PCI/CQI}

The value range is -10 dB to 10 dB.

While generating the HS-DPCCH signal in real-time, the PCI/CQI power offsets of all configured PCI/CQI slots are set to the same value.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPCqi on page 477

PCI/CQI 1/2/3/4 Content - PCI / CQI

Accesses a dialog for configuring the PCI and CQI report. The provided settings depend on the selected "PCI/CQI Type".

3GPP FDD A: ME1 PCI/	CQI1		×
PCI/CQI 1			
PCI / CQI Type		A (Dı	ual TB)
CQI 1			1
CQI 2			3
PCI			2

$\textbf{CQI/CQI}_{S}/\textbf{CQI}_{1}/\textbf{CQI}_{2} \gets \textbf{PCI/CQI} \ \textbf{1/2/3/4} \ \textbf{Content} \gets \textbf{PCI} \ \textbf{/} \ \textbf{CQI}$

Sets the CQI report transmitted during the PCI/CQI slots of the TTIs during the corresponding specified PCI/CQI From/To range (see Chapter 3.1.15.6, "CQI Reports: Type A and Type B", on page 41 and "CQI reports: CQI1 and CQI2" on page 45).

- "CQI"
 Sets the CQI value for CQI Type B report and the CQI in normal operation.

 "CQI_S"
 Sets the CQI value in case a CQI Type A report when one transport block is preferred.
- "CQI₁" Sets the CQI₁ value of CQI Type A report when 2 transport blocks are preferred or the CQI₁ value of a composite CQI report of a dual cell only operation.
- "CQI₂" Sets the CQI₂ value of CQI Type A report when 2 transport blocks are preferred or the CQI₂ value of a composite CQI report of a dual cell only operation.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>: CQI<us> on page 477

$\textbf{PCI} \leftarrow \textbf{PCI/CQI 1/2/3/4 Content} \leftarrow \textbf{PCI / CQI}$

Selects the PCI value transmitted during the PCI/CQI slots of the TTIs during the corresponding specified PCI/CQI From/To range (see PCI reports).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:
PCI on page 477

Suggested / Current ARB Seq. Length (HS-DPCCH)

Displays the suggested and current ARB sequence length, in case the signal is not generated in real-time.

The "Suggested ARB Sequence Length" is the calculated minimum length that depends on the Inter TTI Distance (Interval), the Number of Rows/Number of Rows, the HARQ-ACK Repeat After and the PCI/CQI Repeat After. The current ARB sequence length is adjusted by pressing the button "Adjust ARB Sequence Length".

Example: Effect of the ARB Sequence Length

- Preset the instruments and adjust the settings as described in Example "HS-DPCCH Scheduling" on page 192.
 Use the Scheduling List to show the HS-DPCCH scheduling (see also Figure 4-21).
- Change the Compatibility Mode (HS-DPCCH) to "Release 8 and Later" and compare the displayed HS-DPCCH scheduling in the "Scheduling List".

Real-time signal generation

ARB signal generation with "Current ARB Seq. Length" < "Suggested ARB Seq. Length"

3GPP FD	D A: UE1	/Schedul	ing List		_	×	
Frame	Start		0	Number Of F	rames	10	
X: The c	hannel is hannel is	active	in the s	lot.		Î	
	hannel is				h-1		
C: PCT/C	OI inform	ation is	s transmi	itted in the sym tted in the symb	1001. 101.		
				-			
Frane	Slot	DPCCH	DPDCH	HS-DPCCH			
Number:	Number:	Slots:	Slots:	Symbols:			
0	0	х	x				
-	ĩ	x	x				
	2	x	x				
	3	X	X				
	4	x	x				
	5 6	x x	x				
	7	x	x				
	8	x	x				
	9	x	x				
	10	х	х	-нннннннн			
	11	х	х	Н			
	12	x	X				
	13 14	x	x				
	14	A	A				
1	0	x	x				
	1	x	x				
	2	x	x				
	3	X	X				
	4 5	x	x				
	6	x	x				
	7	x	x				
	8	x	x				
	9	х	x				
	10	х	x	-нннннннн			
	11	x	X	HCCCCCCCC			
	12 13	X X	X X	CCCCCCCCC			
	13	x	x				
	**	•	<u>A</u>				

Frame St	tart									
			0	Number Of F	Number Of Frames					
 The channel is inactive in the slot. X: The channel is active in the slot. The channel is inactive in the symbol. HARD-ACK information is transmitted in the symbol. C: PCI/QI information is transmitted in the symbol. The channel restarts because of the ARB sequence length. 										
Frame	Slot	DPCCH	DPDCH	HS-DPCCH						
Number: 1	Number:	Slots:	Slots:	Symbols:						
1	0 1 2 3 3 4 5 6 6 7 8 9 10 11 12 13 14 0 1 12 3 4 4 5 6 6 7 8 9 10 11 2 3 4 5 10 11 2 3 4 5 5 11 2 3 4 5 5 6 6 7 8 9 9 11 2 3 3 4 5 5 6 6 7 8 9 9 11 2 3 3 4 5 6 6 7 8 9 9 11 2 3 3 4 5 6 6 7 8 9 9 11 2 3 3 4 5 6 6 7 8 9 9 11 11 2 3 3 4 5 6 6 7 8 9 9 11 11 2 3 3 4 5 6 6 7 8 9 9 11 11 2 3 3 4 5 6 6 7 8 9 9 11 11 2 3 3 4 5 6 6 7 8 9 9 11 11 2 2 3 4 4 5 6 6 7 7 8 9 9 11 11 2 2 3 4 4 5 7 8 9 9 11 11 2 2 3 4 4 5 7 8 9 9 11 11 2 2 3 4 4 5 7 8 9 9 11 11 2 2 3 4 4 5 7 8 9 9 11 11 2 2 3 4 4 5 8 9 9 11 11 2 2 3 4 4 5 6 6 7 8 9 9 11 11 2 2 3 4 4 5 6 6 7 7 8 9 9 11 1 12 2 3 4 4 5 6 6 7 7 8 9 9 11 1 12 2 3 4 4 5 6 6 7 7 8 9 9 11 1 12 2 3 4 4 5 8 9 9 11 1 12 2 3 4 4 5 8 9 9 11 1 12 2 3 4 4 5 8 9 9 10 11 1 2 2 3 4 4 5 8 9 9 11 1 12 2 3 4 4 5 8 9 9 10 11 1 2 2 3 4 4 5 8 9 9 10 11 1 2 2 3 4 4 5 8 9 9 10 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		1					

The channel restarts after 1 frame ("Current ARB Seq. Length = 1 Frame")

 The "Suggested / Current ARB Sequence Length" is 12 / 1. Press the Adjust ARB Sequence Length (HS-DPCCH).

The "Current ARB Seq. Length" is adjusted, the channel restarts after 12 frames and the "Scheduling List" shows the HS-DPCCH scheduling in all frames as in the real-time mode.

Tip: To ensure a long enough ARB sequence, select "3GPP FDD > Filter/ Clipping/ARB Settings" and adjust the <u>Sequence Length ARB</u> so that the ARB sequence length is multiple or equal the scheduling repetition.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth? on page 478

Adjust ARB Sequence Length (HS-DPCCH)

Sets the current ARB sequence length to the suggested value (see also Example "Effect of the ARB Sequence Length" on page 200).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth:ADJust on page 479

4.30.4 HS-DPCCH Settings for Normal Operation (Up to Release 7)

The R&S SMW supports also the parameters for backward compatibility.

- To enable these parameters, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "HS-DPCCH".
- 3. Select "Compatibility Mode > Up to Release 7".

3GPP FDD A: User Equipment1			_ ×
General Code DPCC		⊙e-dpcch ⊖e-dpdch e	-DCH
HARQ-ACK (Slo 1	ts)	CQI (Slots) 2	ŕ
State	Off Of	n Power	-10.00 dB
Compatibility Mode	Up to Release 7	•	
Start Delay	101 *256 Chips	Power Offset ACK	1.5 dB •
Inter TTI Distance	5 Subframes	Power Offset NACK	1.0 dB •
Channelization Code	Q / 6-	4 MIMO Mode	On
ACK/NACK Pattern (bin)	1.		
CQI Pattern Length		4	
CQI Values	1 1	10	2

The dialog contains the parameters that were available up to the selected release.

Power Offset ACK

Sets the power offset P_{off_ACK} of an ACK response to a single scheduled transport block relative to the CQI Power P_{CQI} .

The power PACK used during the HARQ-ACK slot is calculated as:

 $P_{ACK} = P_{CQI} + P_{off_{ACK}}$

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk on page 463

Power Offset NACK

Sets the power offset P_{off_NACK} of an NACK response to a single scheduled transport block relative to the CQI Power P_{CQI} .

The power P_{NACK} used during the HARQ-ACK slot is calculated as:

 $P_{NACK} = P_{CQI} + P_{off NACK}$

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PONAck on page 463

ACK/NACK Pattern

(available for "MIMO Mode" set to Off only)

Enters the pattern for the HARQ-ACK field (Hybrid-ARQ Acknowledgment).

After receiving a transmission packet, the user equipment returns feedback information in the HARQ-ACK field that is related to the accuracy of downlink HS-DSCH transmission.

One bit is used per HS-DPCCH packet. The maximum length of the pattern is 32 bits.

- ""1" = ACK" The HARQ ACK is sent. Transmission was successful and correct.
- ""0" = NACK" The NACK is sent. Transmission was not correct. With an NACK, the UE requests retransmission of the incorrect data.
- ""-" = DTX" Nothing is sent. Transmission is interrupted (Discontinuous Transmission (DTX)).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HAPattern on page 464

CQI Pattern Length

(available for "MIMO Mode" set to Off only)

Sets the length of the CQI sequence. The values of the CQI sequence are entered in input fields "CQI Values". The pattern is generated cyclically.

With the CQI (Channel Quality Indicator), the user equipment informs the base station about the receive quality of the downlink HS-PDSCH.

Thus, the base station can adapt the modulation and coding scheme to improve the signal quality. The instrument supports the control of the base station HS-PDSCH by CQI sequences with a length of 1 to 10 values.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI:PLENgth on page 464

CQI Values

(available for MIMO Mode set to Off only)

Enters the values of the CQI sequence. Value -1 means that no CQI is sent (DTX).

The length of the CQI sequence is set at input field CQI Length. The pattern is generated cyclically.

With the CQI (Channel Quality Indicator), the user equipment informs the base station about the receive quality of the downlink HS-PDSCH. Thus, the base station can adapt the modulation and coding scheme to improve the signal quality. The instrument supports the control of the base station HS-PDSCH by CQI sequences with a length of 1 to 10 values.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues] on page 465

MIMO Mode (Up to Release 7)

(enabled for configuration for instruments equipped with option R&S SMW-K83 only)

Enables/disables working in MIMO mode for the selected UE.

When MIMO mode is enabled, the parameters ACK/NACK Pattern, CQI Pattern Length and CQI Values are not available. Several MIMO specific parameters are enabled for configuration (see Chapter 4.30.5, "MIMO Settings HS-DPCCH (Up to Release 7)", on page 203s).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO[:MODE]
on page 465

4.30.5 MIMO Settings HS-DPCCH (Up to Release 7)

MIMO settings are available for configuration only for instruments equipped with option R&S SMW-K83 and enabled parameter "MIMO Mode".

- To access these parameters, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "HS-DPCCH".
- 3. Select "Compatibility Mode > Up to Release 7".

4. Select "MIMO Mode > On".

GPP I	FDD A: Us	er Equipme	nt1								_	×
OG	eneral	Code Domain	DPCC	нОп	PDCH	OHS-DPCCH	OE-DPCCH	E-DPDC	HE-DCH			
Compatibility Mode		Up to R	eleas	e 7	•							
Start Delay				101 *256 Chips		- Power Of		1.5	dB	•		
Inter TTI Distance			5	Subframes	- Power Of	fset NACK		1.0	dB	•		
Channelization Code					Q / 6	4 MIMO Mo	MIMO Mode				V On	
						MIMO Se	ettings					
Pow	ver Offse	et ACK/AC	ĸ	1.0 dB		Power Offset ACK/NACK		ск	0.0	dB	•	
Pow	ver Offse	et NACK/A	ск	0.0 dB		- Power Of	АСК	0.0	dB	•		
Pow	ver Offse	et CQI Typ	e A		2.0 d	IB	- Number C	OfTTIs		3		
HARQ-ACK		PCI	CQI 1	Гуре	CQI/CQIs/C	CQI/CQIs/CQI1 CQI2				-		
0	TB1:	АСК, ТВ2	ACK	3				2 5				
1	Sin	gle TB: NA	ACK	1	1 Туре В			9				
2	Sir	ngle TB: A	СК	0	Тур	e A Single TB		1				

The available settings allow you to adjust the HS-DPCCH configuration for UE configured in MIMO mode.

The HS-DPCCH structure can be configured with the parameters Inter TTI Distance and Number of TTIs, as well as by configuring the HARQ-ACK and CQI/PCI information per TTI by means of the parameters of the HS-DPCCH scheduling table. Any combination of single or dual transport block HARQ-ACK, PCI value, CQI Type and corresponding CQI value(s), as well as channel power can be configured.

Power Offset ACK/ACK

Sets the power offset $P_{off_ACK/ACK}$ of an ACK/ACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} .

The power P_{ACK/ACK} used during the HARQ-ACK slots is calculated as:

 $P_{ACK/ACK} = P_{CQI} + P_{off_ACK/ACK}$

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POAAck
on page 465

Power Offset ACK/NACK

Sets the power offset $P_{off_ACK/NACK}$ of an ACK/NACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} .

The power $P_{ACK/NACK}$ used during the HARQ-ACK slots is calculated as:

 $P_{ACK/NACK} = P_{CQI} + P_{off_ACK/NACK}$

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POANack on page 466

Power Offset NACK/ACK

Sets the power offset $P_{off_NACK/ACK}$ of an NACK/ACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} .

The power P_{NACK/ACK} used during the HARQ-ACK slots is calculated as:

 $P_{NACK/ACK} = P_{CQI} + P_{off NACK/ACK}$

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONAck
on page 467

Power Offset NACK/NACK

Sets the power offset $P_{off_NACK/NACK}$ of an NACK/NACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} .

The power P_{NACK/NACK} used during the HARQ-ACK slots is calculated as:

 $P_{NACK/NACK} = P_{CQI} + P_{off_NACK/NACK}$

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONNack
on page 467

Power Offset CQI Type A

Sets the power offset $P_{off_CQI Type A}$ of the PCI/CQI slots in case a CQI Type A report is sent relative to the CQI Power P_{CQI} .

The power P_{CQI Type A} used during the PCI/CQI slots is calculated as:

P_{CQI Type A} = P_{CQI} + P_{off_CQI Type A}

Since the CQI Type B reports are used in a single stream transmission (see Chapter 3.1.15.6, "CQI Reports: Type A and Type B", on page 41), the power $P_{CQI Type B} = P_{CQI}$.

The value range is -10 dB to 10 dB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POCA on page 468

Number of TTIs (Up to Release 7)

Selects the number of configurable TTIs.

This parameter determines the number of the rows in the HS-DPCCH scheduling table. Each row represents one TTI. The parameters set in the table are read out cyclically.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTICount on page 468

HARQ-ACK (Up to Release 7)

Selects the information transmitted during the HARQ-ACK slot of the corresponding TTI (see Chapter 3.1.15.5, "MIMO uplink control channel support", on page 40).

"DTX" Selects Discontinuous Transmission (DTX) for the corresponding TTI. During that TTI no feedback information is sent, i.e. all other parameters in the feedback signaling table are disabled.

"Single TB: ACK/Single TB: NACK"

Selects an ACK or NACK response to a single scheduled transport block.

"TB1:ACK,TB2:ACK / TB1:ACK,TB2:NACK / TB1:NACK,TB2:ACK / TB1:NACK,TB2:NACK"

Selects the response to two scheduled transport blocks.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK on page 469

PCI (Up to Release 7)

Selects the PCI value transmitted during the PCI/CQI slots of the corresponding TTI (see Chapter 3.1.15.7, "PCI reports", on page 41).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI on page 469

CQI Type (Up to Release 7)

Selects the type of the CQI report (see Chapter 3.1.15.6, "CQI Reports: Type A and Type B", on page 41).

"Type A Single TB"

Selects CQI Type A report with information that 1 transport block is preferred.

"Type A Double TB"

Selects CQI Type A report with information that 2 transport blocks are preferred.

"Type B" Selects CQI Type B report.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>: CQIType on page 469

CQI/CQI_S/CQI₁/CQI₂ (Up to Release 7)

Selects the CQI report transmitted during the PCI/CQI slots of the corresponding TTI (see Chapter 3.1.15.6, "CQI Reports: Type A and Type B", on page 41).

"CQI" Sets the CQI value for CQI Type B report.

- "CQI_S" Sets the CQI value in case a CQI Type A report when 1 transport block is preferred.
 "CQI₁" Sets the CQI₁ value of CQI Type A report when 2 transport blocks are preferred.
- "CQI₂" Sets the CQI₂ value of CQI Type A report when 2 transport blocks are preferred.

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:
CQI<di> on page 470
```

4.31 E-DPCCH Settings - UE

- To access the E-DPCCH channel settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
- 2. Select "Mode > DPCCH + DPDCH".
- 3. Select "E-DPCCH".

3GPP FDD A: User Equipment1		_ ×
Ogeneral Code DPCCH ODPDCH	HS-DPCCH OE-DPCCH OE-DPDCH E-DCH	
Happy Bit Retrans Sequence Numbe	er E-TFCI Information 7	
State Off (On Power 0.00 dE	3 -
Retransmission Sequence Number	0 Channelization Code	I / 1
E-TFCI Information	0 Happy Bit	On
HSUPA FRC		

The dialog displays the channel structure and the available parameters.

State (E-DPCCH)

Activates or deactivates the E-DPCCH channel.

If an FRC is set for the channel, this field is activated automatically.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:STATe on page 519

Power

Sets the power of the E-DPCCH channel. The value range is -80 dB to 0 dB.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:POWer on page 519

Retransmission Sequence Number Sets the retransmission sequence number.

The value range is 0 to 3.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:RSNumber on page 519

Channelization Code

Displays the channelization code and the modulation branch (always I) of the E-DPCCH. The code channel is spread with the set channelization code (spreading code). The standard assigns a fixed channelization code to the E-DPCCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:CCODe?
on page 518

E-TFCI Information

Sets the value for the TFCI (Transport Format Combination Indicator) field.

The value range is 0 to 127.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:TFCI
on page 519

Happy Bit

Activating the happy bit. This bit is indicating whether the UE could use more resources (Not Happy/deactivated) or not (Happy/activated).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:HBIT
on page 518

HSUPA FRC...

For UE1, accesses the dialog for configuring the FRC (Fixed Reference Channel), see Chapter 4.32, "HSUPA FRC Settings - UE", on page 208.

Remote command: n.a.

4.32 HSUPA FRC Settings - UE

The "UE HSUPA FRC" dialog provides the parameters for configuring the fixed reference channel (FRC) and the settings for the HARQ simulation.

For more information, see also Chapter 3.1.12, "HARQ Feedback", on page 32 and Chapter 3.1.14.4, "16QAM Fixed Reference Channel: FRC 8", on page 36.

4.32.1 FRC General Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "E-DPCCH > HSUPA FRC ... "

3GPP FDD A: UE1/HSUPA FRC Settings										
General	Coding/Physical Channels	ODTX	OHARQ	Simulation	OBit Error Insertion	O ^{Block Erro}	r			
HSUPA FR	с					Off		On		
Fixed Refe	rence Channel (F	RC)		8 .						
Maximum Ir	nformation Bitrate	/kbps					8	3 109.0		
UE Catego	ry							7		

The dialog comprises the common settings for the fixed reference channel (FRC).

State (HSUPA FRC)

Activates or deactivates the FRC state for the E-DCH channels.

If FRC is activated, the channels E-DPCCH and E-DPDCH are automatically activated.

The following parameters of these channels are set automatically, depending on the configured FRC:

- for E-DPCCH:
 - "Retransmission Sequence Number" is set to 0 "E-TFCI"
- For E-DPDCH:
 - Overall Symbol Rate is set according to the correspondent parameter of FRC. The "Modulation" is set according to the "Modulation" used for the selected FRC.

The E-DPDCH Data Source is set according to the Data Source (E-DCH) used for the selected FRC.

- For E-DCH Scheduling:
 - E-DCH TTI is set according to the E-DCH TTI of the selected FRC If the "HARQ Simulation" is disabled and the state in the DTX mode section is activated, the "E-DCH Scheduling Table" is configured according to the "DTX Pattern" specified.

By enabled "HARQ Simulation", the settings in the "E-DCH Scheduling Table" are configured to ensure a continious E-DCH transmission.

Note: HSUPA FRCs are disabled, if UL-DTX... / User Scheduling State or Dynamic Power Control State are activated.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe on page 516

Fixed Reference Channel (FRC)

Selects the FRC according to TS 25.141 Annex A.10.

Additionally, user defined FRC can be configured.

FRC8 is available only for instruments equipped with R&S SMW-K83.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CHANnel on page 507

Maximum Information Bitrate/kbps

Displays the maximum information bit rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MIBRate?
on page 514

UE Category

Displays the UE category that is minimum required for the selected FRC (see also Chapter 3.1.19.2, "UL 16QAM UE Capabilities", on page 47).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC: UECategory? on page 518

4.32.2 Coding And Physical Channels Settings

 To access the coding and physical channel settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE" 2. Select "E-DPCCH > HSUPA FRC...> Coding/Physical Channels"

3GPP FDD A: UE1/HSUPA FRC Settings	_	×
General Coding/Physical ODTX	HARQ Simulation Bit Error Block Error	
Data Source (E-DCH)	PN 9	
Overall Symbol Rate	2x960 + 2x1920 ksps	•
Modulation	4PAM	•
E-DCH TTI	2 ms	•
Number Of HARQ Processes		8
Binary Channel Bits / TTI (Nbin)		23 040
Transport Block Size Table	Table 3 (2ms)	•
Transport Block Size Index (E-TFCI)		96
Information Bit Payload (Ninf)		16 218
Coding Rate (Ninf Nbin)		0.704

This dialog comprises the parameters required for configuring the physical channel settings and coding.

Data Source (E-DCH)

Selects the data source for the E-DCH channels, i.e. this paramter affects the corresponding paramter of the E-DPDCH.

The following standard data sources are available:

- "All 0, All 1" An internally generated sequence containing 0 data or 1 data.
- "PNxx" An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern.

- Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.

 Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA on page 507

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:
PATTern on page 509

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: DSELect on page 508

Overall Symbol Rate

Sets the overall symbol rate for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe on page 515

Modulation

Sets the modulation of the FRC, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

There are two possible modulation schemes specified, BPSK and 4PAM (4 Pulse-Amplitude Modulation). The latter one is available only for the following Overall Symbol Rates:

- 2x960 ksps
- 2x1920 ksps
- 2x960 + 2x1920 ksps.

Note: Modulation scheme 4PAM is available only for instruments equipped with the HSPA+ option R&S SMW-K83.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC: MODulation on page 515

E-DCH TTI

Sets the size of the TTI (Transmission Time Interval) for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DCH scheduling configuration.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch on page 518

Number Of HARQ Processes

Displays the number of HARQ (Hybrid-ARQ Acknowledgement) processes. This value determines the distribution of the payload in the subframes.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC: HPROcesses? on page 514

Binary Channel Bits / TTI (Nbin)

Displays the number of binary bits per TTI.

Transport Block Size Table

Selects the Transport Block Size Table from 3GPP TS 25.321, Annex B according to that the transport block size is configured.

The transport block size is determined also by the parameter "Transport Block Size Index".

The allowed values of this parameter depend on the selected "E-DCH TTI" and "Modulation" scheme.

E-DCH TTI	Modulation	Transport Block Size Table	Transport Block Size Index (E-TFCI)		
2 ms	BPSK	Table 0	0127		
		Table 1	0125		
	4PAM	Table 2	0127		
		Table 3	0124		
10 ms	-	Table 0	0127		
		Table 1	0 120		

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS: TABLe on page 516

Transport Block Size Index (E-TFCI)

Selects the Transport Block Size Index (E-TFCI) for the corresponding table, as described in in 3GPP TS 25.321, Annex B.

The value range of this parameter depends on the selected "Transport Block Size Table".

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS: INDex on page 516

Information Bit Payload (Ninf)

Displays the payload of the information bit. This value determines the number of transport layer bits sent in each HARQ process.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:PAYBits? on page 515

Coding Rate (Ninf/Nbin)

Displays the relation between the information bits to binary channel bits.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CRATe? on page 507

4.32.3 DTX Mode Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "E-DPCCH > HSUPA FRC... > DTX"

3GPP FDD A: l	JE1/HSUPA FRC Set	tings					_	×
General	Coding/Physical Channels		OHARQ	Simulation	OBit Error Insertion	OBlock E	rror n	
State						Off	\bigcirc	On
User Data (DTX Pattern)							1

This dialog comprises the parameters required for enabling and defining user data.

State (DTX)

Activates or deactivates the DTX (Discontinuous Transmission) mode.

Note: If activated, the "E-DCH Scheduling Table" in the "E-DPCCH Settings" dialog is configured according to the "DTX Pattern" specified.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:
STATe on page 511
```

User Data (DTX Pattern)

Sets the user-definable the bit pattern for the DTX. The maximum length is 64 bits.

The following values are allowed:

- 1: Data transmission
- -: DTX

Note: If activated, this setting will overwrite the "E-DCH Scheduling Table" in the "E-DPCCH Settings" dialog.

HSUPA FRC Settings - UE

Example:

"User Data (DTX Pattern) = 1-11-" sets the E-DCH Scheduling settings as follow:

3GPP FDD A: User Equipme	_	×							
General Code Domain	DPCCH	ODPDCH						CH E-D	сн
E-DCH TTI		10 ms	•		E-DC	H From TTI	E-DCH To T	ГІ	Ĩ
Number Of Table Row	s		3	0		2		0	
E-DCH Schedule Rep	eats After	5 TTI	s -	2		3		3	_

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:
PATTern on page 510
```

4.32.4 HARQ Simulation Settings

This section describes the HARQ settings. The provided settings depend on the selected "HARQ Simulation > Mode".

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "E-DPCCH > HSUPA FRC... > HARQ Simulation".
- 3. Select "Mode > Virtual HARQ".

HSUPA FRC Settings - UE

3GPP FDD A: l	JE1/HSUPA FRC Set	tings					_	×
General	Coding/Physical Channels	ODTX	OHARQ	Simulation	O ^{Bit Error} Insertion	OBlock Er		
State						Off		On
Mode				Virtual	HARQ			•
			-Virtual HA	RQ Mode-				
Always Use	e Redundancy Ve	rsion 0					l	<mark>∕</mark> On
HARQ1: AG	CK/NACK		1	HARQ2: A	CK/NACK			1
HARQ3: AG	CK/NACK		1	HARQ4: A	CK/NACK			1
HARQ5: AG	CKINACK		1	HARQ6: A	CK/NACK			1
HARQ7: AG	CK/NACK		1	HARQ8: A	CK/NACK			1

4. Select "Mode > HARQ Feedback".

3	GPP FDD A: I	JE1/HSUPA FRC Set	tings					_	×	
	General	Coding/Physical Channels		OHARQ Sir	nulation	O ^{Bit Error} Insertion	O ^{Block El}			
ſ				HARQ Fee	dback—					
	Always Use	e Redundancy Ve	rsion 0					V	On	
	Maximum N	Number Of Retran	smission	S					4	
	ACK Defini	ition			High				•	
	Connector				Local				•	
					Local Connector Settings					
	Delay Betw	veen HARQ And F	eedback				13	8 *256	Chips	
	Additional U	Jser Delay					0	*256 C	hips -	
			TTL Inp		olink Signal	(((O))) Oevice Under Test				

For background information, refer to Chapter 3.1.12, "HARQ Feedback", on page 32.

State (HARQ)

Activates or deactivates the HARQ simulation mode.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation[:STATe] on page 514

Mode (HARQ)

Selects the HARQ simulation mode.

- "Virtual HARQ" This mode simulates basestation feedback. For every HARQ process (either 4 or 8), a bit pattern can be defined to simulate ACKs and NACKs.
- "HARQ Feedback" (not supported in Baseband C/D)
 This mode allows you to dynamically control the transmission of the HSUPA fixed reference channels. An "ACK" from the base station leads to the transmission of a new packet while a "NACK" forces the instrument to retransmit the packet with a new channel coding configuration (i.e. new "redundancy version") of the concerned HARQ process.
 For further information, see Chapter 3.1.12, "HARQ Feedback", on page 32.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:MODE on page 512

Virtual HARQ Mode

Simulates a basestation feedback with the follwoing settings:

Always Use Redundancy Version 0 (HARQ) ← Virtual HARQ Mode

If activated, the same redundancy version is sent, that is, the redundancy version is not adjusted for the next retransmission in case of a received NACK.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:RVZero on page 513

(HARQ mode Virtual HARQ only)

Enters the pattern for the HARQ (Hybrid-ARQ Acknowledgement).

The maximum length of the pattern is 32 bits.

- ""1" = ACK" New data is transmitted and the RSN (Retransmission Sequences Number) is set to 0.
- ""0" = NACK" The data is retransmitted and the RSN is increased with 1. The maximum value of RSN is 3, i.e. even if more than 3 retransmissions are configured, the RSN remains 3.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ[: SIMulation]:PATTern<ch> on page 514

HARQ mode HARQ Feedback

(not supported in Baseband C/D)

Dynamically control the transmission of the HSUPA fixed reference channels wit hthe following settings:

Always Use Redundancy Version 0 (HARQ) ← HARQ mode HARQ Feedback If activated, the same redundancy version is sent, that is, the redundancy version is not adjusted for the next retransmission in case of a received NACK.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:RVZero on page 513

Maximum Number Of Retransmissions (HARQ) ← HARQ mode HARQ Feedback

Sets the maximum number of retransmissions. After the expiration of this value, the next packet is sent, regardless of the received feedback.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:MRETransmissions on page 513

ACK Definition (HARQ) ← HARQ mode HARQ Feedback

Selects whether a high level (TTL) is interpreted as an ACK or a low level.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:ADEFinition on page 511

Connector (HARQ) ← HARQ mode HARQ Feedback

Selects the connector used by the HARQ Feedback line.

Tip: Assign different connectors to the two basebands to enable two HARQ feedback lines with different configuration.

In this firmware version, the "Global" connector is disabled.

See Chapter 3.2, "Routing and enabling an external control signal", on page 52.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:CONNector on page 511

Delay Between HARQ And Feedback (HARQ) ← **HARQ mode HARQ Feedback** Displays the time between the start of the HARQ process and the start of the related feedback.

For further information, see Chapter 3.1.12, "HARQ Feedback", on page 32.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:DELay:FEEDback? on page 512

Additional User Delay - HARQ mode HARQ Feedback

Sets an additional delay to adjust the delay between the HARQ and the feedback.

For further information, see Chapter 3.1.12, "HARQ Feedback", on page 32.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:
SIMulation:DELay:AUSer on page 512
```

4.32.5 Bit and Block Error Insertion Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "E-DPCCH > HSUPA FRC... > Bit/Block Error Insertion".

	JE1/HSUPA FRC Set					_	×
General	Coding/Physical Channels	ODTX	OHARQ Simulation	OBit Error Insertion	OBlock E		
State					Off	\odot	On
Bit Error Ra	ite					0.001	000 0
Insert Error	s On	F	Physical Layer				•

The dialogs provide the parameters for inserting errors into the data source and into the CRC checksum.

Bit Error State

Activates or deactivates bit error generation.

Bit errors are inserted into the data fields of the enhanced channels. It is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor: BIT:STATe on page 509

Bit Error Rate

Sets the bit error rate. The value range is 10E-1 to 10E-7.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor: BIT:RATE on page 509

Insert Errors On

Selects the layer in the coding process at which bit errors are inserted.

"Transport layer"

Bit errors are inserted in the transport layer.

"Physical layer"

Bit errors are inserted in the physical layer.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:
BIT:LAYer on page 509
```

Block Error State

Activates or deactivates block error generation.

The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor: BLOCk:STATe on page 510

Block Error Rate

Sets block error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor: BLOCk:RATE on page 510

4.33 E-DPDCH Settings - UE

- To access the E-DPDCH channel settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE".
- 2. Select "Mode > DPCCH + DPDCH".

3. Select "E-DPDCH".

3GPP FDD A: User Equipmer	t1						_	×
OGeneral Code Domain	DРССН ОГ	OPDCH	Онѕ-дрссн	OE-DPCCI	H OE-DPDCH	E-DCH		
			Data 1280					
State			Off O	On				
Overall Symbol Rate [k	ps]	60		•	Force Channeli	zation Coo	de To I/O	On
Modulation		BPSK		•				
	1		2	3		4		
Channel Type	E-DP	DCH	E-DPDC	ж	E-DPDCH	E-DI	PDCH	
Symbol Rate / State	6	0	Off		Off	C	Off	
Channelization Code	Q/	32						
Channel Power /dB	0.0	00						
E-DPDCH Data Source	e PN	9						
E-DPDCH Pattern	()						

The dialog displays the channel structure and the available parameters.

4.33.1 E-DPDCH Common Settings

State (E-DPDCH)

Activates or deactivates all the E-DPDCH channels.

If an FRC is set for the channel, this field is activated automatically.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:STATe on page 521

Force Channelization Code To I/0

Sets the channelization code to I/0.

This mode can only be activated if the overall symbol rate is less than 2 x 960 kbps.

It is provided for test purposes. Using an oscilloscope, the data bits of the E-DPDCH are visible on the I/Q signal if:

- Force Channelization Code to I/0 is On
- Scrambling Code Mode is set to Off.
- DPDCH power is 80 dB

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:FCIO on page 520

Overall Symbol Rate

Sets the overall symbol rate of all the E-DPDCH channels.

The structure of the E-DPDCH channel table depends on this parameter. The overall symbol rate determines which E-DPDCHs are active, which symbol rate they have and which channelization codes they use.

E-DPDCHs that are not active by virtue of the overall rate are also disabled for operation.

If an FRC is set for the channel, this field is read-only.

Note: If the Dynamic Power Control State and/or the UL-DTX... / User Scheduling State is enabled, the E-DPDCH is generated in realtime. Then only the overall symbol rates with one E-DPDCH channel or those that restrict the E-DPDCHs to the I or Q branch are enabled for configuration.

To send simultaneously multiple physical E-DPDCH, set the Overall Rate to one of the predefined two-channel configurations. For some special applications it might be necessary to split up the generation of this channels to two baseband blocks. The instrument provides additionally special non-standard overall symbol rates, that enable the instrument to generate only the E-DPDCH channels of the I branch or of the Q branch per baseband block.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:ORATe on page 520

Modulation

Sets the modulation of the E-DPDCH.

There are two possible modulation schemes specified for this channel, BPSK and 4PAM (4 Pulse-Amplitude Modulation). The latter one is available only for Overall Symbol Rates using two channels, e.g 2x960 ksps and/or 2x1920 ksps.

Note: Modulation scheme 4PAM is available only for instruments equipped with the HSPA+ option R&S SMW-K83.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:MODulation on page 520

4.33.2 Channel Table

The channel table allows you to configure the individual parameters for the E-DPDCH channels. The structure of the currently selected channel is displayed graphically in the table header.

The number of active channels depends on the selected overall symbol rate. You can select the data sources for the individual channels. The remaining parameters are only displayed and their values depend also on the overall symbol rate. See also Table A-3 and Table A-4.

Channel Number

Displays the channel number.

Remote command: n.a. (the channel is selected by the suffix at keyword CHANnel<n>)

Channel Type

Displays the channel type.

Remote command: n.a.

Symbol Rate / State

Displays the symbol rate and the state of the E-DPDCH channel.

The symbol rate and the state of the channels are dependent on the overall symbol rate set and cannot be modified.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: SRATe? on page 506

Channelization Code

Displays the channelization code and the modulation branch (I or Q) of the DPDCH channel.

The channelization code is dependent on the overall symbol rate set and cannot be modified.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: CCODe? on page 504

Channel Power

Sets the power of the selected E-DPDCH channel.

The power entered is relative to the powers of the other channels and does not initially relate to the "Level" power display. If Adjust Total Power to 0dB is executed, all the power data is relative to "Level"

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: POWer on page 506

E-DPDCH Data Source

Selects the data source for the E-DPDCH channel.

The data source for the DPDCH is also entered here for the enhanced channels of UE1 without channel coding.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

- "PNxx" An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern. • "Data List/Select DList"

A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:
DATA on page 504
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:
DATA:PATTern on page 506
[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:
DATA:DSELect on page 505
```

4.34 E-DCH Scheduling - UE

(requires option R&S SMW-K83)

- To access the E-DCH settings, select "3GPP FDD > User Equipment > link Direction > Uplink / Reverse > User Equipments > UE"
- 2. Select "E-DCH".

						_	×
ODPDCH	Он	S-DI	рссн	OE-DPCC		DCH E-	DCH
2 ms	•	0	E-DC	H From TTI 3	E-DCH To	TTI 6	
	2	1		128		156	
r 1 000 TTI	s -						
	2 ms	2 ms •	2 ms 0 2 1	2 ms - 0 2 1	2 ms - E-DCH From TTI 0 3 1 128	2 ms - 0 3 2 1 128	0 3 6 2 1 128 156

This dialog comprises the settings necessary to configure the common time schedule of the E-DPDCH and E-DPCCH. The settings enable you to configure single E-DCH packets or "bursts" of variable length consisting of several successive E-DCH packets and to decide upon the E-DCH packets distribution. Use the Scheduling List to display and verify the configured uplink scheduling for every UE.

Real-time vs. ARB signal generation

The E-DCH channels are generated in real-time or as an ARB signal.

- If the E-DCH channels are generated as ARB signal, the ARB sequence length has to be long enough and a multiple or equal the scheduling repetition.
- The instrument generate the channels in real-time if UL-DTX... / User Scheduling State and/or Dynamic Power Control State is activated.
 - During generation of E-DCH channels in real-time, channel coding (i.e. activation of FRCs) is disabled. Use pre-channel-coded data list as "Data Source" if channel coded data on the E-DCH is required.
 - The E-DPDCH can be generated in realtime only for overall symbol rates with one E-DPDCH channel or those that restrict the E-DPDCHs to the I or Q branch.

Example: E-DCH Scheduling

To configure an E-DCH transmission in TTIs 3-6, 128-156, 1003-1006, 1128-1156, etc. perform the settings listed in Table 4-11.

Parameter	Value	Comment
Select "3GPP FDD > Filter/Clipping/ARB Settings" and adjust the Sequence Length ARB	200 frames	If the E-DCH channels are generated as ARB signal, the ARB sequence length has to be long enough and a multiple or equal the scheduling repetition.
E-DCH TTI	2 ms	
Number of Table Rows	2	two scheduled E-DCH bursts
E-DCH Schedule Repeats After	1000 TTIs	each E-DCH burst is repeated every 1000 TTIs
Row#0		E-DCH burst (4 E-DCH packets)
"E-DCH TTI From"	3	
"E-DCH TTI To"	6	
Row#1		E-DCH burst (29 E-DCH packets)
"E-DCH TTI From"	128	
"E-DCH TTI To"	156	
E-DPCCH State	On	Enables E-DPCCH
E-DPDCH State	On	Enables E-DPDCH

Table 4-11: E-DCH scheduling example

Open the Scheduling List to display the E-DCH scheduling.

E-DCH Scheduling - UE

3GPP FD	d A: UE1/	/Schedul	ing List				×
Frame	Start		0	Number	Of Fran	nes	10
X: The	channel i channel i channel r	s active	in the		sequence	lengt	h.
Frame Number:	Slot Number:	DPCCH Slots:	DPDCH Slots:	E-DCH TTI Number:	E-DPCCH Slots:	E-DP Slot	
0	0	х	x	0	1	1	
	1	X	X				
	2	X	X		-		
	3 4	x x	x x	1			
	5	x	x				
	6	x	x	2	- i	- i -	
	7	x	x	-	i	i	_
	8	х	x		i –	i	
	9	X	x	3	х	х	
	10	x	x		x	х	_
	11	X	X		X	x	_
	12	X	X	4	X	x	_
	13 14	x x	x x		x x	x x	_
	14	•	•		•	~	_
1	0	x	x	5	х	х	_
	1	X	x		X	х	_
	2	x	х		X	х	
	3	X	X	6	X	х	
	4	X	X		X	X	
	5	X	X	-	x	x	
	6 7	x x	X	7	1		
	7	X X	x x				
	9	x	x	8			
	1 0	x	x	-	i	- i -	
	11	x	x		i	i	
	12	x	х	9	Í.	i	
	13	X	X		1	1	
	14	X	X		I.	1	
2	0	x	x	10	1	I	-

E-DCH TTI

Sets the size for the TTI (Transmission Time Interval).

If an FRC is set for the E-DPCCH or UL-DTX... / User Scheduling State is enabled, this field is read-only.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:TTIEdch

on page 521

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIEdch on page 521

Number of Table Rows

Sets the number of the rows in the scheduling table, i.e. determines the number of the E-DCH "bursts" enabled for configuration. An E-DCH "burst" is build of several successive E-DCH packets.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount on page 522

E-DCH Schedule Repeats After

Determine the number of TTIs after that the E-DCH scheduling is repeated.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat on page 522

E-DCH Scheduling Table

Enables the user to flexible configure single E-DCH packets or E-DCH "bursts" of variable length consisting of several successive E-DCH packets

E-DCH TTI From - E-DCH Scheduling Table

Determines the start TTI of the corresponding E-DCH burst.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM on page 522

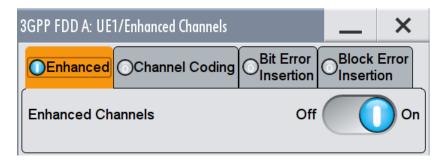
E-DCH TTI To ← E-DCH Scheduling Table

Determines the end TTI of the corresponding E-DCH burst.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:TO on page 522

4.35 Global Enhanced Channel Settings - UE1



The "Global Enhanced Channel" settings are only available for user equipment 1 (UE1).

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "DPDCH Settings > Global Enhanced Channels...".

4.35.1 Enhanced Channels State

Select "Enhanced".

In this tab, you can activate the global enhanced settings.

Enhanced Channels State

Displays the enhanced state of the station. As at least the DPCCH of UE1 is always calculated in realtime, the enhanced state is always on for UE1.

The DPCCH and one DPDCH of user equipment 1 are generated in realtime. Depending on the actual configurations, other channels of user equipment 1 may also be generated in realtime.

It is possible to activate channel coding and simulate bit and block errors. Data lists, for example with user data for the transport layer, can be used as the data source.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:STATe on page 539

4.35.2 Channel Coding

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "DPDCH Settings > Global Enhanced Channels...".

- × 3GPP FDD A: UE1/Enhanced Channels Block Error Bit Error Enhanced Channel Coding Insertion Insertion State Off On General Coding Type RMC (12.2 kbps) DTCH 1 PN 9, 244 User Coding... DTCH 2 PN 9, 100 Overall Symbol Rate 60 ksps DTCH 3 PN 9. 100 600 Bits per Frame (DPDCH) DTCH 4 PN 9, 100
- 3. Select "Channel Coding"

The "Channel Coding > General" tab comprises the settings for enabling and configuring the channel coding. The provided settings are devided into general settings and several sub-tabs, one per transport channel.

To access the channel coding settings of a transport channel, select the corresponding side tab, for example "DTCH1". Refer to Chapter 4.35.3, "Transport Channel", on page 232 for description of the provided settings.

An uplink reference measurement channel according to 3GPP TS 25.141 is generated when the transport channels DTCH (Dedicated Traffic Channel) and DCCH (Dedicated Control Channel), which contain the user data, are mapped to a DPDCH (Dedicated Physical Data Channel) with a different data rate after channel coding and multiplexing. The display below is taken from the standard (TS 25.141) and shows in diagrammatic form the generation of a 12.2 kbps reference measurement channel from the DTCH and DCCH transport channels.

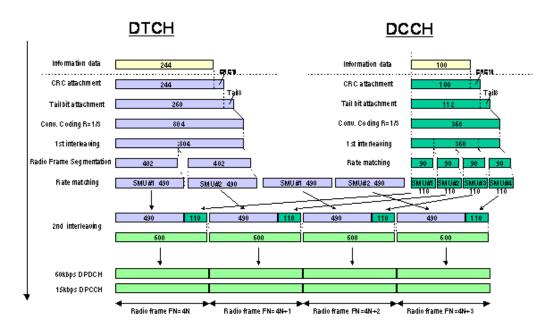


Figure 4-22: Channel coding of the 12.2 kbps reference measurement channels (uplink)

Channel Coding State

Activates or deactivates channel coding.

Note: Annex A.1, 3GPP TS 25.141, lists the recommended DPCCH-settings.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:STATe on page 534

Coding Type

Selects channel coding.

The 3GPP specification defines 4 reference measurement channel coding types, which differ in the input data bit rate bit to be processed (12.2, 64, 144 and 384 ksps). The additional AMR CODER coding scheme generates the coding of a voice channel.

"User" coding can be defined as required in the detailed coding settings menu section revealed with button "Show Details". They can be stored and loaded in the "User Coding" submenu. Selection "User" is indicated as soon as a coding parameter is modified after selecting a predefined coding type.

The input data bits are taken from the data source specified for the "Transport Channels" for channel coding. The bits are available with a higher rate at the channel coding output. The allocations between the measurement input data bit rate and the output symbol rate are fixed, that is to say, the overall symbol rate is adjusted automatically.

The following are available for selection:

"RMC 12.212.2 kbps measurement channelkbps""RMC 64 kbps""RMC 144144 kbps measurement channelkbps"kbps"

"RMC 384 384 kbps measurement channel kbps"

"AMR 12.2 Channel coding for the AMR coder

kbps"

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:TYPE on page 534

User Coding ...

Accesses files with user codings and the standard "File Select" function.

User coding of UE1 are stored as files with the predefined file extension *.3g_ccod_ul. The file name and the directory they are stored in are user-definable; the file extension is assigned automatically.

The complete channel coding settings are saved and recalled.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER: CATalog? on page 535

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER: DELete on page 536

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:LOAD on page 536

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER: STORe on page 536

Overall Symbol Rate

Sets the overall symbol rate of the DPDCH.

The structure of the DPDCH channel table depends on this parameter. The overall symbol rate determines which DPDCHs are active, which symbol rate they have and which channelization codes they use.

DPDCHs that are not active by virtue of the overall rate, are also disabled for operation.

Note: Up to an overall rate of 960 ksps, only DPDCH 1 is active, its symbol rate is the same as the overall rate and the channelization code is the same as spreading factor/4 (spreading factor = chip rate / symbol rate). With an overall symbol rate greater than 960 ksps, all the active DPDCHs have the symbol rate 960 ksps.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:ORATe on page 539

Bits per Frame (DPDCH)

Displays the data bits in the DPDCH component of the frame at physical level. The value depends on the overall symbol rate.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:BPFRame?
on page 533
```

4.35.3 Transport Channel

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "DPDCH Settings > Global Enhanced Channels... > Channel Coding".
- 3. Select the corresponding side tab, for example "DTCH1".

3GPP FDD A: UE1/Enhanced	Channels			_ ×
Enhanced Channe	el Coding	Bit Error Block Error		
State			Off On	General
Data Source	PN 9			O DTCH 1 PN 9, 244
Transport Time Interval	20 ms •	Transport Blocks		O DTCH 2 PN 9, 100
Transport Block Size	244	Size Of CRC	16 -	O DTCH 3 PN 9, 100
Rate Matching Attribute	1	Error Protection	Conv 1/3	O DTCH 4 PN 9, 100
Interleaver 1 State	V On	Interleaver 2 State	V On	O DTCH 5 PN 9, 100

The dialog provides an access to the settings of up to 7 transport channels (TCHs), the DTCHs (DTCH1 to 6) and the DCCH.

Transport Channel State

Activates or deactivates the transport channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
STATe on page 540

In case of remote control, DCCH corresponds to :TCHannel0, DTCH1 to : TCHannel1, etc.

Data Source

Selects the data source for the transport channel.

The data source for the DCCH and DTCH1 can also be selected in the main dialog in the channel table.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data.

• "PNxx"

An internally generated pseudo-random noise sequence.

"Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: DATA on page 541

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: DATA:PATTern on page 543

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
DATA:DSELect on page 542

Transport Time Interval

Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
TTINterval on page 541

Number of Transport Blocks

Sets the number of transport blocks for the TCH.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
TBCount on page 540

Transport Block Size

Sets the size of the transport block at the channel coding input.

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: TBSize on page 541

Size of CRC

Defines the type (length) of the CRC. Checksum determination can also be deactivated (setting None).

Remote command:
[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
CRCSize on page 541

Rate Matching Attribute

Sets data rate matching (Rate Matching).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: RMATtribute on page 540

Error Protection

Selects error protection.

"None" No error protection

"Turbo 1/3" Turbo Coder of rate 1/3 in accordance with the 3GPP specifications.

"Conv 1/2 | 1/3"

Convolution Coder of rate 1/2 or 1/3 with generator polynomials defined by 3GPP.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
EPRotection on page 543

Interleaver 1 State

Activates or deactivates channel coding interleaver state 1 of the transport channel. Interleaver state 1 can be set independently in each TCH. Activation does not change the symbol rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: INTerleaver on page 543

Interleaver 2 State

Activates or deactivates channel coding interleaver state 2 of all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2 on page 539

4.35.4 Error Insertion

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "DPDCH Settings > Global Enhanced Channels...".
- 3. Select "Bit Error Insertion / Block Error Insertion"

3GPP FDD A: UE1/	/Enhanced Channels		_	×	3GPP FDD A: UE	1/Enhanced Channels		_	×
OEnhanced (Channel Coding	OBit Error Insertion	O ^{Bloc}	k Error rtion	Enhanced	OChannel Coding	Bit Error Insertion	O ^{Block} Inser	
State		Off	\odot	On	State		Off	\bigcirc	On
Bit Error Rate			0.001	000 0	Block Error R	ate		0	.100 0
Insert Errors O	n Physica	l Layer		•					

The dialogs provide the parameters for inserting errors into the data source and into the CRC checksum, for example, to check the bit and block error rate testers.

Bit Error State

Activates or deactivates bit error generation.

Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer).

When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe on page 538

Bit Error Rate TCH1

Sets the bit error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:RATE on page 537

Insert Errors On

Selects the layer at which bit errors are inserted.

"Transport	Bit errors are inserted in the transport layer.
layer"	This layer is only available when channel coding is active.
"Physical layer"	Bit errors are inserted in the physical layer.

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer
on page 537

Block Error State

Activates or deactivates block error generation.

The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Block error generation is only available when channel coding is active.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe on page 538

Block Error Rate

Sets the block error rate.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:RATE on page 538

4.36 PRACH Settings - UE

- To access the PRACH settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- Select "Mode > PRACH Standard/PRACH Preamble Only".

The PRACH settings are available in two modes:

 In "Standard" mode, the instrument generates a single physical random access channel (PRACH). This channel is needed to set up the connection between the user equipment and the base station.

PRACH Settings - UE

3GPP FDD A: L	GPP FDD A: User Equipment1 📃 🗙										
General	PRACH Structure	Preamble	Message Part	0	Coding						
State		Of	f O C	Dn	Mode	PRACH Standard					
Scrambling	Code (hex)	0000 00			Scrambling Mode	Long Scrambling Code					
Time Delay		0	Chips	•							

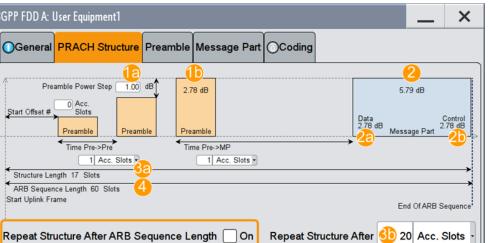
 In "Preamble only" mode, the instrument only generates the preamble of a physical random access channel (PRACH). This mode is needed for Test Case 8.8 TS 25.141.

		—	×
Preamble			
Off On	Mode	PRACH Preamble Only	·
0000 00	Scrambling Mode	Long Scrambling Code	•
0 Chips -			
	0000 00	Off On Mode 0000 00 Scrambling Mode	Off On Mode PRACH Preamble Only 0000 00 Scrambling Mode Long Scrambling Code

In this mode, only the preamble parameters are available.

- 3GPP FDD A: User Equipment1 OGeneral PRACH Structure Preamble Message Part Coding Preamble Power Step 1.00 dB 5.79 dB 2.78 dB O Acc. Slots Start Offset # Data 2.78 dB Preamble Message P Preamble Preamble Time Pre->Pre Time Pre->MP 1 Acc. Slots 1 Acc. Slots -Structure Length 17 Slots ARB Sequence Length 60 Slots Start Uplink Frame
- 3. Select "PRACH Structure".

Figure 4-23: Standard PRACH Structure: Understanding the displayed information


- 1a = "Preamble Power Step"; subtract this value from 1b to calculate the power of the other preambles
- 1b = "Delta Power (Preamble)", i.e. correction value for the last preamble before the message part
- = "Delta Power (Message Part)", i.e. correction value for the message part overall 2
- 2a, 2b = correction values for the data and control part of the message part
- 3a = current "Structure Length"
- = user-defined repetition of the PRACH structure, i.e. the smae structure is repeated 3 times 3b withing the current ARB sequence length
- = current ARB sequence length (in slots); set with the parameter Sequence Length ARB 4

The dialog comprises a graphical representation of the PRACH structure, including the timing parameters, the "Preamble Settings" and "Message Part" sections, comprising respectively the preamble settings for the parameters of the data part of the channel. Some settings are made directly in the input fields of the graphical display.

In the "Channel Coding" section channel coding can be activated.

Power settings and power calculation

- Calculating the power of the preamble The correction value for the last preamble before the message part (indication in the preamble block) are indicated in the graphical display of the PRACH structure. The power of the other preambles are calculated by subtracting the selected "Preamble Power Step".
- Calculating the power of the message part The correction values for the message part overall and separately for data and control part (indications in the message part block) are also indicated. For one active UE and if the "Level Reference" is set to "RMS Power", the RF power of the message part is calculated as: Message Part Power = "RF Level" + Delta Power Message Part

Example: Calculating the power of the message part

- "3GPP > User Equipment > Level Reference > RMS Power"
- "Level = 5 dBm"
- "Delta Power Message Part = 5.79 dB"

The resulting Message Part Power = 5 + 5.79 = 10.79 dBm

4.36.1 Graphical Display

The graphical display shows either the complete PRACH including the message part or only the preamble depending on the selected mode.

PRACH Standard

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PRACH Standard".
- Select "PRACH Structure". See Figure 4-23

PRACH Preamble-only

- 1. In the "General" tab, select "Mode > PRACH Preamble Only"
- 2. Select "PRACH Structure".

3GPP FDD A: User Equipment1		×
OGeneral PRACH Structure Preamble		
Preamble Power Step 1.00 dB Start Offset # 0 Acc. Stots Preamble Preamble Preamble Preamble Time Pre->Pre 1 Acc. Slots • Structure Length 2 Slots		
ARB Sequence Length 60 Slots Start Uplink Frame	End Of ARB S	equence
Repeat Structure After ARB Sequence Length On Repeat Structure After	10 Acc. 8	Slots

Figure 4-24: PRACH Mode Preamble Only

Some of the parameter values can be input directly in the input fields of the graphical display. The indicated structure length and the power correction values match the real settings; the number of preambles, however, is shown as an example, to explain the parameter function. Use the power correction values to calculate the correct settings for the desired RF level, see "Power settings and power calculation" on page 238.

Delta Power (Preamble)

Indicates the level correction value for the last preamble before the message part.

The level of the other preambles can be calculated by subtracting the set "Preamble Power Step".

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer: PREamble? on page 501

Delta Power (Message Part)

Indicates the level correction value for the message part, together with the power offsets of the data and control part.

The indication of the total value is important for measurements where just the envelope of the signal is of interest whereas the separate indication is useful for receiver tests.

See also "Power settings and power calculation" on page 238.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt? on page 500

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt: DATA? on page 500

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt: CONTrol? on page 500

Start Offset

Enters the start offset of the PRACH in access slots or slots.

The starting time delay in timeslots is then equal to 2*"Start Offset #"

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SOFFset on page 501

Time Pre->Pre

Enters the time difference between two successive preambles in access slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREPre on page 502

Time Pre->MP

Enters the time difference between the last preamble and the message part in access slots.

Two modes are defined in the standard. In mode 0, the preamble to message part difference is 3 access slots, in mode 1 it is 4 access slots.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREMp on page 502

Structure Length

Indicates the structure length:

 In "PRACH only - Preamble" mode, the structure length is defined as: "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition"*"Time Pre->Pre"

Example: Calculating the structure length in PRACH Preamble Only mode

"Start Offset # = 1 Access Slots", i.e. 2 Slots

"Preamble Repetition = 2"

"Time Pre->Pre = 2 Access Slots", i.e. 4 Slots

"Structure Length" = 2 Slots + 2 x 4 Slots = 10 Slots

 In "PRACH only - Standard" mode, the structure length is defined as: "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition"*"Time Pre->Pre" + "Time Pre->MP" + 15*"Message Part Length (Frames)"

Example: Calculating the structure length in PRACH Standard mode

"Start Offset # = 2 Access Slots", i.e. 4 Slots "Preamble Repetition = 3" "Time Pre->Pre = Time Pre->MP = 3 Access Slots", i.e. 6 Slots "Message Part Length = 2 Frames" "Structure Length" = 4 Slots + 2 x 6 Slots + 6 Slots + 15 x 2 = 52 Slots

See also "Repeat Structure After ARB Sequence Length" on page 241.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SPERiod?
on page 501

ARB Sequence Length

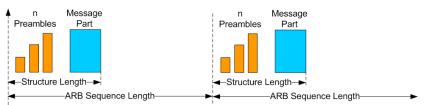
Indicates the ARB sequence length.

Note: A caution message is displayed, if the structure length is longer than the selected ARB sequence length.

The change the ARB sequence length, use the parameter Sequence Length ARB.

Remote command:

[:SOURce<hw>]:BB:W3GPp:SLENgth on page 354


Repeat Structure After ARB Sequence Length

Enables/disables repeating the selected PRACH structure during one ARB sequence.

PRACH Settings - UE

"On"

Within one ARB sequence, the selected PRACH structure is repeated once.

Figure 4-25: "Repeat Structure After ARB Sequence Length = On"

"Off"

The selected PRACH structure can be repeated several time, depending on the structure length and the Repeat Structure After (x Acc. Slots).

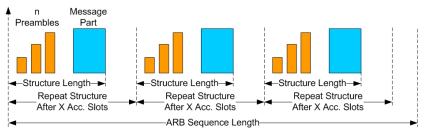


Figure 4-26: "Repeat Structure After ARB Sequence Length = Off"

Remote command: [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:RARB on page 498

Repeat Structure After (x Acc. Slots)

If "Repeat Structure After ARB Sequence Length > Off", sets the number of access slots after that the selected PRACH structure will be repeated, see Figure 4-26.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:RAFTer on page 497

4.36.2 Preamble Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PRACH Standard/PRACH Preamble Only".

3. Select "Preamble".

3GPP FDD A: User Equipment1			—	×
General PRACH Structur	e Preamble Message Part	Coding		
Preamble Power	0.00 dB	Preamble Power Step	0.00 dB	•
Preamble Repetition		1 Signature		0

The dialog comprises the parameters for configuring the PRACH preamble.

Preamble Power

Sets the power of the preamble component of the PRACH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer on page 496

Preamble Power Step

Sets the power by which the preamble is increased from repetition to repetition. The power set with the parameter Preamble Power is the "target power", used during the last repetition of the preamble.

Example:

"Preamble Power = 0 dB"

"Preamble Repetition = 3"

"Preamble Power Step = 3 dB"

Figure 4-27: Generated power sequence

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer:STEP on page 497

Preamble Repetition

Sets the preamble count.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PREPetition on page 497

Signature

Selects the signature to be used for the PRACH channel.

The signature defines the code domain for the channelization code being used. 16 fixed bit patterns are defined.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SIGNature on page 499

4.36.3 Message Part Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PRACH Standard".
- 3. Select "Message Part".

3GPP FDD A: User Equipment1							_	>	<		
GG	eneral	PRAC	CH Struc	ture	Pream	ıble	Message Part	OCoding			
Data	Power		0.00	dB	-	c	Control Power		0.00	dB	
Message Length		1	Fra	mes -	S	Blot Format #				1	
Symbol Rate			30 ksps	;	•	Т	FCI				0
Data Source			PN 9		•						

The tab comprises the settings for the data part of the PRACH.

Data Power

Sets the power of the data component of the PRACH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DPOWer on page 496

Control Power

Sets the power of the control component of the PRACH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:CPOWer on page 494

Message Length

Sets the length of the message component of the PRACH channel in frames.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:MLENgth on page 496

Slot Format

Selects the slot format.

Slot formats 0 to 3 are available for the PRACH channel. The slot format defines the symbol rate of the message component.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SFORmat on page 498

Symbol Rate

Sets the symbol rate of the PRACH channel.

The symbol rate is determined by the slot format set. A change in the symbol rate leads automatically to an adjustment of the slot format.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SRATe on page 499

TFCI

Enters the value of the TFCI field (Transport Format Combination Indicator) in the control component of the PRACH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TFCI on page 499

Data Source

Selects the data source for the data component of the PRACH channel.

The following standard data sources are available:

- "All 0, All 1" An internally generated sequence containing 0 data or 1 data.
- "PNxx" An internally generated pseudo-random noise sequence.
- "Pattern"

An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.

"Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA on page 495 [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:PATTern on page 496

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:DSELect on page 495

4.36.4 Channel Coding State

Channel coding of PRACH is possible for all UEs.

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PRACH Standard".
- 3. Select "Coding".

3GPP FDD A: User Equipment1				_	×
General PRACH Structure Preamb	Message	Part OCoding			
Coding State	On	Coding Type	RACH RMC (TB size 168 bit)		-
	1	ransport Channel			
		RACH			
		168			
		PN 9			
		V On			
Transport Block Size	168	Transport Blocks			1
Transport Time Interval	20 ms				
Size Of CRC	16	Error Protection		Co	nv 1/2
Interleaver 1 State	On	Interleaver 2 State			On

The tab comprises the parameters defining the coding type and activating the PRACH channel. The fixed settings for the channel coding parameters are displayed.

Channel Coding State

Activates or deactivates channel coding for the PRACH channel.

When On, the "Message Part Length" automatically is set to 2. It cannot be changed.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:STATe on page 544

Channel Coding Type

Selects the predefined reference measurement channel coding types for the PRACH channel.

"RACH RMC (TB size 168 bit)"

Reference Measurements Channel Coding with transport block size of 168 bit.

"RACH RMC (TB size 360 bit)"

Reference Measurements Channel Coding with transport block size of 360 bit.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:TYPE on page 545

Show Coding

Calls the menu for displaying the channel coding settings. The reference measurement channel parameters are set to fixed values.

The following parameters are displayed:

"Data Source" The data source is displayed in the transport channel graphical display.

"Transport Block Size"

Size of the transport block at the channel coding input.

"Transport Block"

Transport block count.

"Transport Time Interval"

Number of frames into which a TCH is divided.

"Size of CRC" CRC type (length).

```
"Error Protection"
```

Error protection.

```
"Interleaver 1 / 2 State"
```

Channel coding interleaver state

```
Remote command: n.a.
```

4.37 PCPCH Settings - UE

- To access the PCPCH settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PCPCH Standard/PCPCH Preamble Only".

The PCPCH settings are available in two modes:

In "PCPCH Standard" mode, the instrument generates a single physical common packet channel (PCPCH). This channel is used to transmit packet-oriented services (e.g. SMS).

3GPP FDD A: User Equipment1			_	×
OGeneral PCPCH Structure	Preamble Message Part	OCoding		
State	Off On	Mode	PCPCH Standard	
Scrambling Code (hex)	0000 00	Scrambling Mode	Long Scrambling Code	•
Time Delay	0 Chips -			ļ

 In "PCPCH Preamble only" mode, the instrument only generates the preamble of a physical common packet channel (PCPCH). This mode is needed for Test Case 8.9 TS 25.141.

3GPP FDD A: User Equipment1						_	×
OGeneral PCPCH Structure	Preamble	Message Part		3			
State	Of		n Mode		PCPCH Standa	rd	
Scrambling Code (hex)	0000 00		Scran	nbling Mode	Long Scramblin	g Code	-
Time Delay	0	Chips	•				

In this mode, only the preamble parameters are available.

3. Select "PCPCH Structure".

3GPP FDD A: User Equipment1						_	. ×
OGeneral PCPCH Structure	Preamble	Message Part	Coding				
	10		1 a			2	
Preamble Power Step	1.00 dB	2.57 dB	0.00 dB			5.58 dB	
Start Offset # Slots AICH Preamble	AICH Preamble	AICH Preamble	CD Preamble	PC Preamble	Data 0.00 dB	Message Part	Control 0.00 dB
Time Pre->Pre			Time Pre->M	P	20		-
1 Acc. Slots	• <u>3</u> a		1 Acc	c. Slots -			
Structure Length 19 Slots							
ARB Sequence Length 60 Slots Start Uplink Frame	4					End Of AR	B Sequence
Repeat Structure After ARB S	equence Le	ength	On Repea	t Structure After	3 D :	20 Acc. Slot	s ·

Figure 4-28: Standard PCPCH Structure: Understanding the displayed information

- 1a, 1b = "Delta Power (Preamble)", i.e. correction values for the last AICH preamble before the message part and the CD Preamble
- 1c = "Preamble Power Step"; subtract this value from 1b to calculate the power of the other preambles
- 2 = "Delta Power (Message Part)", i.e. correction value for the message part overall
- 2a, 2b = correction values for the data and control part of the message part
- 3a = current "Structure Length = 19 slots"
- 3b = user-defined repetition of the PCPCH structure, i.e. the smae structure is repeated 3 times withing the current ARB sequence length
- 4 = current ARB sequence length (in slots); set with the parameter Sequence Length ARB

The dialog comprises a graphical display of the PCPCH structure including the timing parameters, the "Preamble Settings" and "Message Part" sections, comprising respectively the preamble settings and the parameters for the data part of the channel. Some settings are made directly in the input fields of the graphical display.

The "Channel Coding" settings for activating channel coding are available for UE1.

Power settings and power calculation

- Calculating the power of the preamble
 The correction value for the last AICH preamble before the message part and the
 CD Preamble (indication in the AICH and CD Preamble block) are indicated in the
 graphical display of the PCPCH structure. These two values are identical.
 The power of the other preambles are calculated by subtracting the selected "Pre amble Power Step".
- Calculating the power of the message part
 The power correction value of the message part is indicated in the message part settings.
 For one active UE, the RF power of the message part is calculated as:

Message Part Power = "RF Level" + Delta Power Message Part For PCPCH, the parameter "Level Reference" is always "RMS Power".

Example: Calculating the power of the message part

- "Level = 5 dBm"
- "Delta Power Message Part = 5.58 dB"

The resulting Message Part Power = 5 + 5.58 = 10.58 dBm

4.37.1 Graphical Display

The graphical display shows either the complete PCPCH including the message part or only the preamble depending on the selected mode.

PCPCH Standard

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PCPCH Standard"
- 3. Select "PCPCH Structure". See Figure 4-28

PCPCH Preamble-only

1. In the "General" tab, select "Mode > PCPCH Preamble Only"

2. Select "PCPCH Structure".

3GPP FDD A: User Equipment1	_	×
General PCPCH Structure Preamble		
Preamble Power Step 1.00 dB 11.28 dB Start Offset # 2 Acc. Slots AICH Preamble AICH Preamble Time Pre->Pre 2 Acc. Slots • Structure Length 12 Slots		>
ARB Sequence Length 60 Slots Start Uplink Frame	End Of ARB S	equence
Repeat Structure After ARB Sequence Length On Repeat Structure After	20 Acc.	Slots -

Figure 4-29: PCPCH Structure in "Mode > PCPCH Preamble-only"

Some of the parameter values can be input directly in the input fields of the graphical display. The indicated structure length and the power correction values match the real settings; the number of preambles, however, is shown as an example, to explain the parameter function.

Use the power correction values to calculate the correct settings for the desired RF level (see "Power settings and power calculation" on page 249).

Delta Power (Preamble)

Indication of the level correction value for the last AICH preamble before the message part. This value is identical to the correction value for the CD preamble.

The level of the other preambles can be calculated by subtracting the set "Preamble Power Step".

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:
PREamble? on page 490

Delta Power (Message Part)

Indicates the level correction value for the message part, together with the power offsets of the data and control part.

See also Example "Calculating the power of the message part" on page 249.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:MPARt?
on page 489

Start Offset

Enters the start offset of the PCPCH in access slots.

Note: The PCPCH only transmitted once, at the start of the sequence.

The starting time delay in time slots is calculated according to TS 25 211, Chapter 7.3 PCPCH/AICH timing relation and is 2*"Start Offset #".

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SOFFset
on page 490

Transmission Timing (Preamble)

Enters the time difference between two successive preambles in access slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREPre on page 491

Transmission Timing (Message Part)

Enters the time difference between the last preamble and the message part in access slots.

Two modes are defined in the standard. In mode AICH transmission timing 0, the preamble to message part difference is 3 access slots, in mode AICH transmission timing 1 it is 4 access slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREMp on page 491

Structure Length

Indicates the structure length:

 In "PCPCH only - Preamble" mode, the structure length is defined as: "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition"*"Time Pre->Pre"

Example: Calculating the structure length in PCPCH Preamble Only mode

"Start Offset # = 2 access slots", i.e. = 4 slots

"Preamble Repetition = 2"

"Time Pre->Pre = 2 access slots", i.e. = 4 slots

"Structure Length" = 4 slots + 2 x 4 slots = 12 slots

 In "PCPCH only - Standard" mode, the structure length is defined as: "Structure Length" = "Start Offset (Slots)" + "Preamble Repetition"*"Time Pre->Pre" + "Time Pre->MP" + "Power Control Preamble Length" + 15*"Message Part Length (Frames)"

In PCPCH mode the CD preamble has to be taken into account. Therefore, Preamble Repetition instead of (Preamble Repetition - 1) is used.

PCPCH Settings - UE

Example: Calculating the structure length in PCPCH Standard mode

"Start Offset = 2 access slots", i.e. 4 slots

"Preamble Repetition = 3"

"Time Pre - Pre = Time Pre - MP = 3 access slots", i.e. 6 slots

"Power Control Preamble Length = 8 slots"

"Message Part Length = 2 frames"

"Structure Length" = 4 slots + 3 x 6 slots + 6 slots + 8 + 15 x 2 = 66 slots

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SPERiod?
on page 491

ARB Sequence Length

Indication of the ARB sequence length.

Note: A caution message is displayed, if the structure length is longer than the selected ARB sequence length.

The change the ARB sequence length, use the parameter Sequence Length ARB.

Remote command: [:SOURce<hw>]:BB:W3GPp:SLENgth on page 354

Repeat Structure After ARB Sequence Length

Enables/disables repeating the selected PCPCH structure during one ARB sequence.

"On"	Within one ARB sequence, the selected PCPCH structure is repeated once. See Figure 4-25 for illustration of the principle.
"Off"	The selected PCPCH structure can be repeated several time, depending on the structure length and the Repeat Structure After (x
	Acc. Slots). See Figure 4-26 for illustration of the principle.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RARB on page 488

Repeat Structure After (x Acc. Slots)

If "Repeat Structure After ARB Sequence Length > Off", sets the number of access slots after that the selected PCPCH structure will be repeated, see Figure 4-26.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RAFTer on page 488

4.37.2 Preamble Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PCPCH Standard/PCPCH Preamble Only".

3. Select "Preamble".

	3GPP FDD A: User Equipment1			_	×
	General PCPCH Structu	ure Preamble Message Part	Coding		
	Preamble Power	0.00 dB •	Preamble Power Step	0.00 dB	
	Preamble Repetition	1	Power Control Preamble Length	8 Slots	•
	Signature	0			
I					

The dialog comprises the parameters for configuring the PCPCH preamble.

Preamble Power

Sets the power of the preamble component of the PCPCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer on page 487

Preamble Repetition

Sets the preamble count.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PREPetition on page 487

Preamble Power Step

Sets the power by which the preamble is increased from repetition to repetition. The power set under Preamble Power is the "target power", used during the last repetition of the preamble.

Example:

"Preamble Power" = 0 dB

"Preamble Repetition" = 3

"Preamble Power Step" = 3 dB

Figure 4-30: Generated power sequence

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer:STEP on page 487

Power Control Preamble Length

Sets the length of the power control preamble in slots.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PLENgth on page 486

Signature

Selects the signature to be used for the PCPCH channel. The signature defines the code domain for the channelization code being used.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:SIGNature on page 489

4.37.3 Message Part Settings

- To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".
- 2. Select "Mode > PCPCH Standard".
- 3. Select "Message Part".

3GPP FDD A: User Equ	_ ×		
	H Structure Preambl	e Message Part OCoding	
Data Power	0.00 dB -	Control Power	0.00 dB
Message Length	1 Frames -	Slot Format Control Part #	1
FBI Mode	1 Bit	FBI Pattern (bin)	0
Symbol Rate	480 ksps -		
Data Source	PN 9		
TFCI	0		
TPC Data Source	Pattern •	TPC Pattern (bin)	0
Read Out Mode	Single + Alt. 01 -		

The tab comprises the settings for the data part of the PCPCH.

Data Power

Sets the power of the data component of the PCPCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DPOWer on page 485

Control Power

Sets the power of the control component of the PCPCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPOWer on page 483

Message Length

Sets the length of the message component of the PCPCH channel in frames.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:MLENgth on page 486

Slot Format

Selects the slot format of the control component of the PCPCH channel.

Slot formats 0 to 2 are available for the PCPCH channel. The slot format defines the structure of the control component, the FBI mode.

When channel coding is active, the FBI mode and the slot format are prescribed.

"Slot format 0" no FBI field

"Slot format 1" 1 FBI field

"Slot format 2" 2 FBI fields

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPSFormat on page 483

FBI Mode

Selects the FBI (Feed Back Information) mode.

The FBI mode is determined by the slot format set. A change in the FBI mode leads automatically to an adjustment of the slot format.

"FBI Off" The FBI field is not in use.

"FBI On 1 Bit" The FBI field is used with a length of 1 bit.

"FBI On 2 Bits" The FBI field is used with a length of 2 bits.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:MODE on page 485

FBI Pattern

Enters the bit pattern for the FBI field in the control part (of the message part) of the PCPCH.

The FBI field is filled cyclically with a pattern of up to 32 bits in length.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:PATTern on page 486

Symbol Rate

Sets the symbol rate of the PCPCH channel.

The symbol rate is determined by the slot format set. A change in the symbol rate leads automatically to an adjustment of the slot format.

When channel coding is active, the symbol rate is prescribed.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:SRATe on page 489

Data Source

Selects the data source for the data component of the PCPCH channel.

The following standard data sources are available:

- "All 0, All 1"
 - An internally generated sequence containing 0 data or 1 data.
- "PNxx" An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"

A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- Section "Modulation Data" in the R&S SMW user manual.
- Section "File and Data Management" in the R&S SMW user manual.
- Section "Data List Editor" in the R&S SMW user manual

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA on page 484
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:PATTern on page 485
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:DSELect on page 484
```

TFCI

Enters the value of the TFCI field (Transport Format Combination Indicator) in the control component of the PCPCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TFCI on page 489

TPC Data Source

Defines the data source for the TPC field of the PCPCH channel.

The following standard data sources are available:

• "All 0, All 1"

An internally generated sequence containing 0 data or 1 data. "Pattern"

- An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.
- "Data List/Select TPC Data List" A binary data from a data list, internally or externally generated.

Select "Select DList" to access the standard "Select List" dialog.

- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also:

- section "Modulation Data" in the R&S SMW user manual.
- section "File and Data Management" in the R&S SMW user manual.
- section "Data List Editor" in the R&S SMW user manual.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA on page 492
[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:DSELect
on page 492

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:PATTern on page 493

Read Out Mode

Defines the TPC data usage.

With 3GPP, the TPC bits are used to signal the increase or reduction in transmit power to the called station. With all read out modes, one bit is taken from the data stream for the TPC field for each slot and entered into the bit stream several times (depending on the symbol rate). The difference between the modes lies in the usage of the TPC bits.

- "Continuous" The TPC bits are used cyclically.
- "Single + All 0" The TPC bits are used once, and then the TPC sequence is continued with 0 bits.
- "Single + All 1" The TPC bits are used once, and then the TPC sequence is continued with 1 bits.

"Single + alt. 01"

The TPC bits are used once and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).

"Single + alt. 10"

The TPC bits are used once and then the TPC sequence is continued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:READ on page 493

4.37.4 Channel Coding Settings

 To access these settings, select "3GPP FDD > Link Direction > Uplink / Reverse > User Equipments > UE 1".

- 2. Select "Mode > PCPCH Standard".
- 3. Select "Coding".

GPP FDD A: User Equipment1				. ×
OGeneral PCPCH Structure Pre	amble Message Pa			
Coding State	On	Coding Type	CPCH RMC (TB size 168 bit)	
	Tran	sport Channel		
		CPCH		
		168 PN 9		
		[√] On		
Transport Block Size	168	Transport Blocks		1
Transport Time Interval	20 ms			
Size Of CRC	16	Error Protection		Conv 1/2
Interleaver 1 State	On	Interleaver 2 State		On

The tab comprises the parameters defining the coding type and activating the PCPCH channel. The fixed settings for the channel coding parameters are displayed.

Channel Coding State

Activates or deactivates channel coding for the PCPCH channel.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:STATe on page 544

Channel Coding Type

Selects the predefined reference measurement channel coding types for the PCPCH channel.

"CPCH RMC (TB size 168 bit)"

Reference Measurements Channel Coding with transport block size of 168 bit.

"CPCH RMC (TB size 360 bit)"

Reference Measurements Channel Coding with transport block size of 360 bit.

Remote command:

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:TYPE on page 544

Show Coding

Calls the menu for displaying channel coding. The reference measurement channel parameters are set to fixed values.

The following parameters are displayed:

"Data Source" The data source is displayed in the transport channel graphical display.

Filtering, Clipping, ARB Settings

```
"Transport Block Size"
Size of the transport block at the channel coding input.
"Transport Block"
Transport blocks count.
"Transport Time Interval"
Number of frames into which a TCH is divided.
"Size of CRC" CRC type (length).
"Error Protection"
Error protection.
"Interleaver 1 / 2 State"
Channel coding interleaver state
Remote command:
n.a.
```

4.38 Filtering, Clipping, ARB Settings

To access this dialog, select "3GPP FDD > General > Filter/Clipping/ARB Settings".

The dialog comprises the settings, necessary to configure the baseband filter, to enable clipping and adjust the sequence length of the arbitrary waveform component.

4.38.1 Filter Settings

3	GPP FDD A: F	_	×			
	Filter Root Cosine	Clipping				
	Filter		Root	Cosine		
	Roll Off Fa	ctor				0.22
	Chip Rate \	/ariation		3.840 00	000 000	Mcps -

Provided are the follwoing settings for configuring the baseband filter:

Filter

Selects the baseband filter.

Remote command:

[:SOURce<hw>]:BB:W3GPp:FILTer:TYPE on page 362

Roll Off Factor or BxT

Sets the filter parameter.

The filter parameter offered ("Roll Off Factor" or "BxT") depends on the currently selected filter type. This parameter is preset to the default for each of the predefined filters.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:APC025 on page 360
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:COSine on page 360
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:GAUSs on page 361
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:RCOSine on page 361
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:SPHase on page 362
```

Cut Off Frequency Factor

Sets the value for the cut off frequency factor. The cut off frequency of the filter can be adjusted to reach spectrum mask requirements.

Remote command:

```
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:LPASs on page 361
[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:LPASSEVM on page 361
```

Chip Rate Variation

Enters the chip rate. The default settings for the chip rate is 3.84 Mcps.

The chip rate entry changes the output clock and the modulation bandwidth, as well as the synchronization signals that are output. It does not affect the calculated chip sequence.

Remote command:

[:SOURce<hw>]:BB:W3GPp:CRATe:VARiation on page 360

4.38.2 Clipping Settings

3GPP FDD A: Filter/Clipping/ARB Se	ettings		×
Filter Root Cosine	3		
State	Off	0	On
Clipping Level		10	0 % -
Clipping Mode		Vector	i+jq •
	8		

Provided are the follwoing settings:

Clipping State

Switches baseband clipping on and off.

Baseband clipping is a very simple and effective way of reducing the crest factor of the WCDMA signal.

WCDMA signals may have very high crest factors particularly with many channels and unfavorable timing offsets. High crest factors entail two basic problems:

- The nonlinearity of the power amplifier (compression) causes intermodulation which expands the spectrum (spectral regrowth).
- Since the level in the D/A converter is relative to the maximum value, the average value is converted with a relatively low resolution. This results in a high quantization noise.

Both effects increase the adjacent-channel power.

With baseband clipping, all the levels are limited to a settable value ("Clipping Level"). This level is specified as a percentage of the highest peak value. Since clipping is done prior to filtering, the procedure does not influence the spectrum. The EVM however increases.

Since clipping the signal not only changes the peak value but also the average value, the effect on the crest factor is unpredictable. The following example shows the effect of the "Clipping" on the crest factor for typical scenarios.

Example: Clipping effect on the crest factor

The Table 4-12 shows changing the crest factor by clipping (vector mode |I+q|) for signal configurations with different output crest factors.

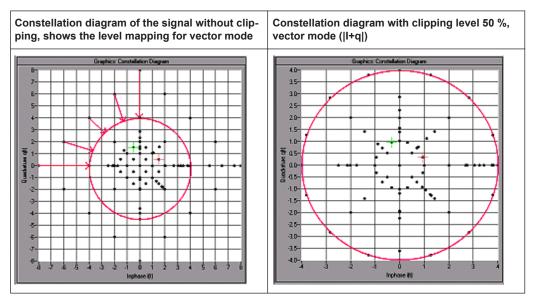

100% clipping levels mean that clipping does not take place.

Table 4-12: Crest factor values as function of the vector clipping
--

Clipping level	Downlink: 10 DPCHs "Minimum Crest" 30 ksps	Downlink: 10 DPCHs "Worst Crest" 30 ksps	Downlink: 10 DPCHs "Average Crest" 30 ksps	Downlink: 128 DPCHs "Average Crest" 30 ksps
100%	9.89 dB	14.7 dB	10.9 dB	21.7 dB
80%	8.86 dB	12.9 dB	9.39 dB	20.2 dB
50%	7.50 dB	10.1 dB	8.29 dB	16.9 dB
20%	5.50 dB	6.47 dB	6.23 dB	12.5 dB
10%	5.34 dB	6.06 dB	5.80 dB	9.57 dB
5%	5.34 dB	6.06 dB	5.80 dB	8.17 dB

The pictures in the following table demonstrate the effect of clipping with vector mode (|I+q|), using a signal configuration with 4 DPCH as an example.

The arrows and the circle in the upper illustration show how the levels are mapped during subsequent clipping in vector mode (|I+q|).

Remote command:

[:SOURce<hw>]:BB:W3GPp:CLIPping:STATe on page 359

Clipping Level

Sets the limit for clipping.

This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Remote command:

[:SOURce<hw>]:BB:W3GPp:CLIPping:LEVel on page 358

Clipping Mode

Selects the clipping method. A graphic illustration of the way in which these two methods work is given in the dialog.

- "Vector | i + jq |" The limit is related to the amplitude | i + q |. The I and Q components are mapped together, the angle is retained.
- "Scalar | i | , | q |"

The limit is related to the absolute maximum of all the I and Q values |i| + |q|. The I and Q components are mapped separately, the angle changes.

Remote command:

[:SOURce<hw>]:BB:W3GPp:CLIPping:MODE on page 359

4.38.3 ARB Settings

3	GPP FDD A: F	_	×			
	Filter Root Cosine	Clipping	ARB			
	Sequence	Length			1 Fra	ames -

Provided are the following settings:

Sequence Length ARB

Changes the sequence length of the arbitrary waveform component of the signal. This component is calculated in advance and output in the arbitrary waveform generator. It is added to the realtime signal components.

The maximum number of frames is calculated as follows:

Max. No. of Frames = Arbitrary waveform memory size/(3.84 Mcps x 10 ms).

Tip: In pure amplifier tests with several channels and no enhanced channels, it is possible to improve the statistical properties of the signal by increasing the sequence length.

Remote command: [:SOURce<hw>]:BB:W3GPp:SLENgth on page 354

5 How to Work with the 3GPP FDD Option

The following step-by-step instructions demonstrate how to perform some signal generation tasks with the 3GPP FDD option.

5.1 Resolving Domain Conflicts


To resolve code domain conflicts

- 1. A downlink domain conflict can be recognized by one of the following methods:
 - a) Select "3GPP FDD > Basestation > Channel Table"

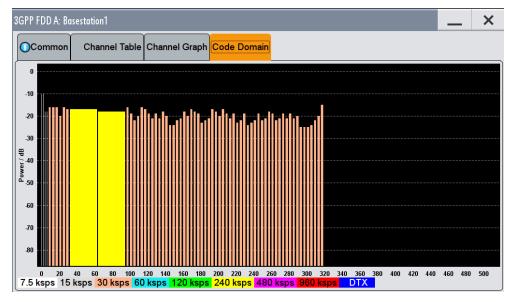
A warning symbol in the tab name indicates a domain conflict. In the channel table, a code domain conflict with an overlying channel (with a lower index) is indicated in column "Dom Conf" on the far right of the table by a conflict symbol and an orange-colored column.

3G	3GPP FDD A: Basestation1												
OCommon Channel Table Channel Graph Code Domain													
Multi Channel Assistant													
							Data 320						
6	Channel Type IPICH	Enh / HSDPA Settings	Slot Fmt		Chan Code U	Power /dB	Data PN 9	DList / Pattern	T Offs	DPCCH Settings		Dom Conf	
7	AICH			15	0	0.00				Config	Off		
8	AP-AICH			15	0	0.00				Config	Off		
9	PDSCH		4	240	0	0.00	PN 9				On		
10	DL-DPCCH		0	7.5	0	0.00				Config	On	⚠	
11	DPCH	Config	15	480	0	0.00	PN 9		0	Config	On	⚠	
12	HS-SCCH	Config		30	5	0.00	PN 9				On	⚠	
13	HS-PDS.QPSK	Config		240	2	0.00	PN 9				On		
14	DPCH		8	30	48	0.00	PN 9		9	Config	On		

b) Select "3GPP FDD > Basestation > Code Domain"
 A code domain conflict is indicated by overlapping bars.

 The instrument helps you to resolve code domain conflicts by automatically adapting the channelization code of the channels involved.
 To access the required function, in the "3GPP FDD > Basestation > Channel

Table" select the conflict symbol and trigger "Resolve Domain Conflicts".


Note: The HSUPA control channels E-RGCH and E-HICH may use the same channelization code as long as they use different signature sequence hopping index that identifies the user equipment. The F-DPCH channels may also use the same channelization code as long as they use a different timing offset (TOffs) or slot format.

The code domain conflict is resolved by changing the channelization codes of the affected channels.

Using the DL-UL Timing Offset Settings

3GPP FDD A: Basestation1												
OCommon Channel Table Channel Graph Code Domain												
Multi Channel Assistant												
							Data 320					
6	Channel Type PICH	Enh / HSDPA Settings	Slot Fmt	Symb Rate /ksps 15	Chan Code U	Power /dB 0.00	Data	DList / Pattern	T Offs 0	DPCCH Settings	State Off	Dom Conf
7	AICH			15	0	0.00				Config	Off	
8	AP-AICH			15	0	0.00				Config	Off	
9	PDSCH		4	240	0	0.00	PN 9				On	
10	DL-DPCCH		0	7.5	32	0.00				Config	On	
11	DPCH	Config	15	480	1	0.00	PN 9		0	Config	On	
12	HS-SCCH	Config		30	9	0.00	PN 9				On	
13	HS-PDS.QPSK	Config		240	4	0.00	PN 9				On	
14	DPCH		8	30	10	0.00	PN 9		9	Config	On	

The graphs immediately display the change

5.2 Using the DL-UL Timing Offset Settings

To generate a continuos uplink signal composed of multiple separately generated uplink frames

- Adjust the uplink settings as required and set "User Equipment > UE > DPCCH > DL-UL Timing Offset = 0 Chips".
- 2. Enable generation of the 3GPP FDD signal, i.e "3GPP FDD > State > On"

Configuring UL-DTX Transmission and Visualizing the Scheduling

- 3. Use the Generate Waveform function to save the current signal as an ARB signal in a waveform file.
- 4. Re-configure the uplink settings and save the signal as an ARB file.
- Use the "Baseband > ARB > Multi Segment" function to assemble a common signal from the several uplink signals.
- 6. If required, re-adjust the "Marker" settings. A sequence list can be additionally applied to configure the order the waveforms are processed and how many times each of them is repeated.

5.3 Configuring UL-DTX Transmission and Visualizing the Scheduling

To configure the instrument to generate an UL DPCCH DTX signal

- 1. Enable "Baseband > 3GPP FDD > Transmission Direction > Uplink".
- Select "User Equipment > UE1 > UL-DTX", enable "Mode > UL-DTX" and configure the following settings:

Parameter	Value
E-DCH TTI	2 ms
UL-DTX Offset	2 Subframes
Inactivity Threshold for Cycle 2	8 TTIs
Long Preamble Length	4 Slots
DTX Cycle 1 / DTX Cycle 2	4 Subframes and 8 Subframes respec- tively
DPCCH Burst Length 1 / DPCCH Burst Length 2	1 Subframes (3 Slots)
UL-DTX / User Scheduling State	On

Table 5-1: UL-DTX Settings

The figure below shows the generated UL DPCCH DTX bursts pattern.

3. Use the Scheduling List to display the configured bust pattern.

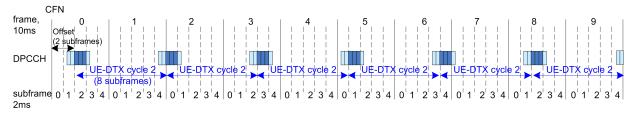


Figure 5-1: Example for UL DPCCH DTX burst pattern as generated by the R&S SMW (E-DCH TTI=2ms, beginning at CFN0, UE_DTX_DRX_Offset=2, DTX Cycle 2=8 subframes)

Configuring UL-DTX Transmission and Visualizing the Scheduling

Note: In this implementation the signal generation starts with UE-DTX cycle 2. The UL DPCCH DTX burst pattern is offset with 2 subframes, the burst are 6 slots long (2 slots Preamble + 3 slots DPCCH Burst Length 2 + 1 slot postamble) and are generated every 8 subframe.

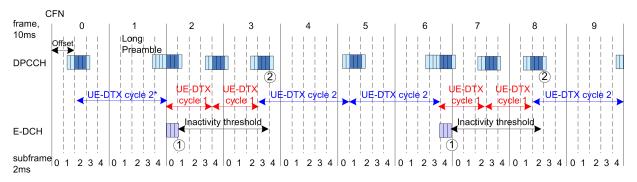

 Select "User Equipment > UE1 > E-DCH Scheduling Settings" and configure the settings as follow:

Table	5-2:	E-DCH	Scheduling	Settinas
Tuble	·	- 2011	ouncauring	ocungo

Parameter	Value
Number of Table Rows	1
E-DCH Schedule Repeats After	24 TTIs
E-DCH TTI From	10
E-DCH TTI To	10

 Select "UE1 > E-DPDCH Settings > State > On" to enable the generation of E-DPDCH.

The "UE1 > Scheduling List" shows the updated UL DPCCH DTX bursts pattern (see also figure below).

Figure 5-2: Example for UL DPCCH DTX burst pattern in case of E-DCH transmission

- 1 = Cycle 2 to Cycle 1 switch after E-DCH transmission
- 2 = Cycle 1 to Cycle 2 switch when the inactivity timer expires
- *) = In the R&S Signal Generator, the signal generation starts with UE-DTX cycle 2.

6. Configure the "UE1 > HS-DPCCH Settings" as follow:

Table 5-3: HS-DPCCH Settings

Parameter	Value
Compatibility Mode (HS-DPCCH)	Release 8 and Later RT
Inter TTI Distance (Interval)	1 subframe
Number of Rows	1
HARQ-ACK Repeat After	40 intervals
HARQ-ACK From Interval/ HARQ-ACK To Inter- val	20 / 20
HS-DPCCH 1/2, HARQ-ACK 1/2/3/4	A

Configuring and Visualizing the Uplink User Scheduling

Parameter	Value
Number of Rows	1
PCI/CQI Repeat After	40 intervals
PCI-CQI From Interval/ PCI-CQI To Interval	2 /2
HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type	CQI
CQI/CQI _S /CQI ₁ /CQI ₂	5

 Select "UE1 > HS-DPCCH Settings > State > On" to enable the transmission of control signaling.

The figure below shows the generated UL DPCCH DTX bursts pattern.

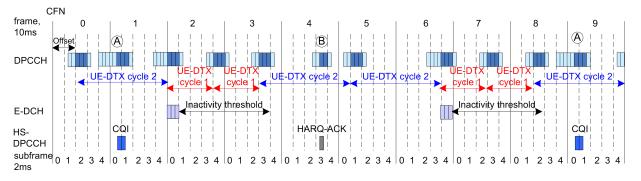


Figure 5-3: Example for UL DPCCH DTX burst pattern in case of E-DCH and HS-DPCCH transmissions

A = DPCCH burst caused by the transmission of a CQI report

B = DPCCH burst caused by the transmission of a HARQ-ACK message

Although there is an HS-DPCCH transmission, the UE does not switch from UE-DTX cycle 2 to UE-DTX cycle 1.

5.4 Configuring and Visualizing the Uplink User Scheduling

To configure an uplink user scheduling

Consider the exemplary scheduling file. The file content is suitable as a basis for further customization.

- 1. Enable "Baseband > 3GPP FDD > Transmission Direction > Uplink".
- Select "User Equipment > UE1" and enable the channels DPDCH and E-DCH; enable "Dynamic Power Control".
- Select "User Equipment > UE1 > UL-DTX/User Scheduling", enable "Mode > User Scheduling".

- Use the example scheduling file to generate an user scheduling according to your testing needs.
- 5. Open the "UE1 > Scheduling List" to visualize the configured transmission.

3GPP FD	D A: UE1	l/Sched	uling Lis	t		_	×
Frame	Start			0 Numb	er Of Frame	s	10
	hannel is hannel is						Ť
Frame Number:	Slot Number:	DPCCH Slots:	DPDCH Slots:	E-DCH TTI Number/Size:	E-DPCCH Slots/E-TFCI:	E-DPDCH Slots:	
0	0	I	I	0 / 10 ms	I	I	- 1
	1	1	1		1	1	- 8
	2	I	1		I	I.	
	3	I.	1		I	I.	
	4	1	1		I	I.	
	5	1	1		I	1	- 1
	6	1	1		I	1	- 1
	7	1	1		1	1	
	8	1	1		I	I.	
	9	1	1		I	1	- 1
	10	1	1		1	1	
	11	1	1		1	1	
	12	1	1		1	1	
	13	1	1		1	1	
	14	I	I		I	L	- 1
1	0	x	I	1 / 2 ms	X / 5	x	- 1
	1	х	1		х	х	
	2	х	1		х	х	
	3	х	1	2 / 2 ms	X / 5	х	
	4	х	1		х	х	
	5	х	1		х	х	
	6	х	1	3 / 2 ms	X / 5	х	
	7	х	1		х	х	
	8	х	1		х	х	
	9	х	1	4 / 2 ms	X / 5	х	
	10	х	1		x	х	
	11	x	1		x	x	
	12	x		5 / 2 ms	x / 5	x	
	13	x	1		x	x	
	14	x	1		x	x	
2	0	I	I	6 / 2 ms	I.	1	
	1	1	1		1	1	
	2	1	1		1	1	
	3	i	i	7 / 2 ms	i		
	4	i	÷				

Figure 5-4: Example: Scheduling List display of the User Scheduling configuration

How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests

```
<command slot="15" action="EDCH ON" />
<command slot="15" action="EDCH TTIS" ttis="2" />
<command slot="15" action="EDCH ETFCI" etfci="5" />
<command slot="15" action="DPCCH OFF" />
<command slot="15" action="EDCH OFF" />
<command slot="45" action="DYNPC ON" />
<command slot="45" action="DPCCH ON" />
<command slot="45" action="DPDCH ON" />
<command slot="45" action="EDCH_ON" />
<command slot="45" action="EDCH TTIS" ttis="10" />
<command slot="45" action="EDCH_ETFCI" etfci="20" />
<command slot="60" action="DPCCH OFF" />
<command slot="60" action="DPDCH OFF" />
<command slot="60" action="EDCH OFF" />
<command slot="60" action="DYNPC OFF" />
<command slot="150" action="REPEAT" />
```

</SMxScheduling>

Interpretation of the scheduling

- The instrument will transmit the following channels:
 - DPCCH and E-DCH during the second frame (frame # 1, from slot # 15 to slot # 29), where a TTI size of 2 ms and an E-TFCI of 5 is used for the E-DCH
 - DPCCH, DPDCH and E-DCH during the fourth frame (frame # 3, from slot # 45 to slot # 59), where a TTI size of 10 ms and an E-TFCI of 20 is used for the E-DCH.
- External dynamic power control commands are considered during the second transmission block of the example. The instrument ignores any power control commands during the first transmission block and during all prior signal gaps, between and after the two transmission blocks.
- The scheduling is looped at slot 150, i.e a transmission of DPCCH and E-DCH starts from slot 165 on, a (power controlled) transmission of DPCCH/DPDCH/E-DCH starts from slot 195 on, etc.

The displayed information in the "Scheduling List" confirms the expected scheduling of the channels as well as the changes in the E-DCH E-TFCI and TTI size. Refer to Chapter 4.27, "Scheduling List", on page 172 for detailed explanation on how to understand the displayed information.

5.5 How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests

The following is an example on how to use the provided settings to configure the instrument to send ACK only messages, as required in the ACK mis-detection test for 4C-HSDPA, according to 3GPP TS 25.141, section 8.11A.3 and 8.11A.4.

How to Configure the HS-DPCCH Settings for 4C-HSDPA Tests

The example is based on the test configuration specified in 3GPP TS 25.141, Annex A. 9A.

Test Configuration	4/4/4	4/2/2	3/3/3	3/2/1	3/3/0
HS-DPCCH Spread- ing Factor	128	128	128	128	256
Secondary Cell Enabled	3	3	2	2	2
Secondary Cell Active	3	1	2	1	2
Number of MIMO car- riers	4	2	3	1	0

To configure the 4C-HSDPA HS-DPCCH Reference Measurement Channel

The example lists only the related setting and is based on Test Configuration = 3/3/3, see Table 5-4.

- 1. Enable "Baseband > 3GPP FDD > Link Direction > Uplink".
- 2. Select "User Equipment > UE1" and enable the "HS-DPCCH > State > On".
- 3. Select "HS-DPCCH > MIMO Mode > On".
- 4. Select "HS-DPCCH > Secondary Cell Enabled > 2".
- 5. Select "HS-DPCCH > Secondary Cell Active > 2".
- Use the default values "HS-DPCCH > HARQ-ACK Scheduling > Number of Rows > 1" and "HS-DPCCH > HARQ-ACK Scheduling > HARQ-ACK Repeat After > 1".
- Select "HS-DPCCH > HARQ-ACK Scheduling > HS-DPCCH 1 HARQ-ACK 1 > AA/ AA".
- Select "HS-DPCCH > HARQ-ACK Scheduling > HS-DPCCH 1 HARQ-ACK 2 > AA/D".

3GPP FDD A: User Eq	uipment1						_	×
General Co Do	de main DPCC		OHS-DPCCH	ОЕ-ДРССН	OE-DPDCH	E-DCH		
Start Delay		101	*256 Chips		ode		V	On
Inter TTI Distance	(Interval)	5	Subframes	- Seconda	ry Cell Enabled	k		2
Channelization Co	de		Q / :	32 Seconda	ry Cell Active			2
Slot Format			1 (30ksp	os)				
			HARQ -	ACK				
Number of Rows					CK Repeat Aft	er	1 Intervals	-
		PCCH 1 HS-DPO HACK HARQ-/ 1 2	ACK 1 HS-DPCCH 2 ACK HARQ-ACK 3	HS-DPCCH 2 HARQ-ACK 4	ow Offs /dB			×
0 0	0 A/		D		0.0			
								×

6 Application Sheets

Application sheets describe short application examples for selected issues and provide related background information.

6.1 Uplink Dual Cell HSDPA Test Signal Generation

The R&S SMW supports the generation of feedback messages for HSDPA data acknowledgment and channel quality indication as defined in the 3GPP TS 25.212 release 8 and release 9.

This application sheet describes how to configure the R&S SMW to generate an uplink test signal for basic tests on Dual Cell HSDPA (DC-HSDPA) operation.

6.1.1 Options and Equipment Required

The following equipment is required:

- Vector Signal Generator R&S SMW, equipped with:
 - Latest firmware version recommended
 - one of the baseband options, e.g. R&S SMW-B10
 - one of the frequency options, e.g. R&S SMW-B103
- Option R&S SMW-K42, "Digital Standard 3GPP FDD"
- Option R&S SMW-K83, "3GPP FDD enhanced incl. MS/BS tests, HSPA, HSPA+"

6.1.2 Test Setup

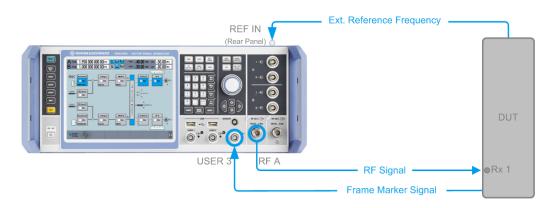


Figure 6-1: Test Setup

6.1.3 Generating an uplink DC-HSDPA Test Signal (Non MIMO Mode)

To generate an uplink test signal corresponding to the signal of a UE configured to work in DC-HSDPA non MIMO mode, configure the uplink HS-DPCCH as follows:

- 1. Preset the R&S SMW to ensure a defined instrument state.
- Open the 3GPP FDD dialog (e.g. "Baseband Block > 3GPP FDD") and select "Link Direction > Uplink".
- 3. In the "3GPP FDD" dialog, select "User Equipment > UE1".
- 4. Set the "Scrambling Code" as required.
- 5. In the "User Equipment" dialog, select the "HS-DPCCH" tab and perform the following:
 - a) Ensure that the "Compatibility Mode" is set to "Release 8 and Later".
 - b) Select the "Secondary Cell Enabled = 1" and "Secondary Cell Active = 1" to configure dual cell HSDPA mode for the selected UE.

3GPP FDD A: User Equipment1				_ ×
OGeneral Code Domain DPC	ссн Орросн		CH OE-DPCCH OE-DPI	DCH E-DCH
HARQ-ACK (Slo 1	ts)		CQI (Slots) 2	Î
State	Off	On	Power	0.00 dB -
Compatibility Mode	Release 8 and	Later -		
Start Delay	101 *256	Chips -	MIMO Mode	On
Inter TTI Distance (Interval)	5 Subf	rames ·	Secondary Cell Enabled	1
Channelization Code		Q / 64	Secondary Cell Active	1
Slot Format		0 (15ksps)		

- c) Configure the HS-DPCCH structure with the parameters "Inter TTI Distance" and "Number of HARQ-ACK or PCI/CQI Rows", as well as by configuring the HARQ-ACK and CQI/PCI information per interval by means of the parameters in the table.
- d) Set the parameter "HS-DPCCH 1 HARQ-ACK 1" as required to adjust the information transmitted during the HARQ-ACK slot of the corresponding TTI.
 For example, an *A*/*N* feedback means that an ACK is sent to the serving cell and a NACK to the secondary serving cell.
- e) To include composite CQI messages in the signal as specified in 3GPP TS 25.212:
 - Select "HS-DPCCH 1 PCI/CQI Type > Composite CQI"
 - Select "PCI/CQI 1 Content > Config" and adjust the values of the parameters "CQI1" and "CQI2"
- f) Adjust the power settings as required.
- g) Execute "Adjust ARB Sequence Length".
- h) Set the "HS-DPCCH > State > On" and close the dialog.

Uplink Dual Cell HSDPA Test Signal Generation

pri	FDD A: U	ser Equi	pment	t1								-	-	×
00	General	Cod Dom		орссн		осн 💽	HS-DPCCH	OE-DPCC	ж ́⊙е-і	DPDCH	E-DCH			
HARQ - ACK														
Nur	nber of	Rows					1	HARQ-AC	CK Repe	at After	1	Inte	ervals	-
	HARQ-A From Interval	CK HARC To Inter	D	HS-DPC HARQ-A 1		S-DPCCH 1 ARQ-ACK 2	I HS-DPCCH 2 HARQ-ACK 3	HS-DPCCH 2 HARQ-ACK 4	Pow Offs /dB					×
0		0	C	A/N					0.0					
PCI/CQI														
		_								. (
Nur	mber of	Rows					— PCI / CC 1	PCI/CQI	Repeat A	After	1	Inte	ervals	
Nur	PCI/CQI From		PCI	CQI1 F	PCI/CQI Content	HS-DPC 1 PCI/CQ Type	1 CH 1	PCI/CQI		HS-DPCC	CH 2	QI4 F	ervals Pow Off /dB	s
Nur 0	PCI/CQI From	PC/CQI To	PCI/ Ty	CQI1 F pe		1 PCI/CQ Type	CH 1 12 PCI/CQ12	PCI/CQI	PCI/CQI 3	HS-DPCO PCI/CQI	CH 2 4 PCI/C	QI4 F	Pow Off	
	PCI/CQI From Interval	PCI/CQI To Interval	PCI/ Ty	CQI1 F pe	Content	1 PCI/CQ Type	CH 1 12 PCI/CQ12	PCI/CQI	PCI/CQI 3	HS-DPCO PCI/CQI	CH 2 4 PCI/C	QI4 F	Pow Off /dB	

- 6. In the "3GPP FDD" dialog, select "Trigger" and adjust the settings as required. For example, to synchronize the R&S SMW to the frame timing of the DUT:
 - a) feed the frame marker signal of the DUT (if available) to the "USER 3" connector of the instrument
 - b) enable "Trigger > Mode > Armed Auto"
 - c) select "Trigger > Source > External Global Trigger 1"
 - select "Trigger > Global Trigger Settings" and confirm that the global connector "USER3" is configured for "Direction > Input" and "Signal > Global Trigger 1".
- In the "3GPP FDD" dialog, set the "State > On" to enable the generation of the 3GPP FDD uplink (UL) signal.
- In the "RF > RF Frequency > Reference Frequency" dialog, adjust the settings as required.

For example, if a common reference signal is used or if the DUT provides the reference frequency, connect the reference signal source to the R&S SMW, select "Source External" and adjust the "External Reference Frequency".

- 9. Press the FREQ key and select the desired RF frequency, e.g. 1950 MHz.
- 10. Adjust the output signal level as required and press the RF ON/OFF key to activate the RF output.

6.1.4 Generating an Uplink Test Signal for Simultaneous Dual Cell and MIMO Operation

Perform the steps described above and enable the parameter "3GPP FDD > UE1 > HS-DPCCH Settings > MIMO Mode".

You are enabled to configure the HARQ-ACK feedback messages for up to four simultaneously transmitted downlink transport blocks.

Uplink Dual Cell HSDPA Test Signal Generation

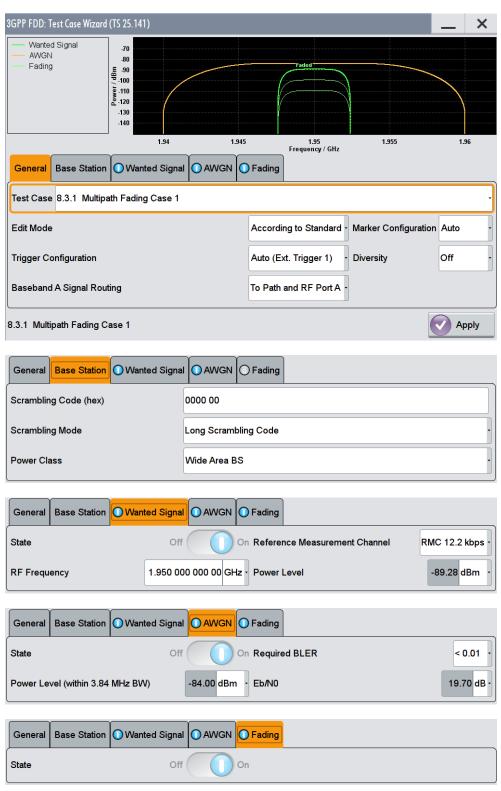
For background information about the dual cell operation and processing of HARQ-ACK feedback messages, refer to Chapter 3.1.16, "Dual Cell HSDPA (DC-HSDPA)", on page 42.

7 Performing Base Stations Tests According to TS 25.141

This section describes the "Test Case Wizard", provided for tests on Base Stations in Conformance with the 3G Standard 3GPP FDD.

7.1 Introduction

The Test Case Wizard supports tests on base stations in conformance with the 3G Standard 3GPP-FDD. It offers a selection of predefined settings according to Test Cases in TS 25.141.


The basic equipment layout for the test is the same as for the 3GPP FDD signal generation. It includes the options Baseband Main Module (B13), Baseband Generator (B10/ B11) and Digital Standard 3GPP FDD (K42). However, some of the tests require further options. An overview of the available test cases is given is in "Test Case" on page 281.

The Test Case Wizard has effect on frequency and level settings, link direction, trigger, baseband clock source, marker settings and base station or user equipment configuration. Besides the 3GPP required settings also interfering signals (AWGN, CW interferer, co-located modulation signals) or fading profiles are set.

The degree of freedom in setting the parameters can be determined. The "According to Standard" edit mode allows only settings in compliance with TS 25.141. The "User Definable" edit mode allows a wider range of settings.

 To access the dialog for setting the 3GPP FDD digital standard, select "Baseband > 3GPP FDD".

2. Select "General > Test Case Wizard"

This dialog comprises the settings necessary to select and configure a test case.

The "Test Wizard" dialog is divided into several sections:

- At the top of the panel, the test case is selected. In the "General Settings" section the edit mode and the general signal generator parameters are set.
- The base station parameters are input in the "Basestation Configuration" section.
- The graph in the right upper section symbolizes the interference scenario defined by power level and frequency offset.
- The middle section depends on the selected test case. It displays the input/output parameters of the wanted and the interfering signals and further configuration entries besides the default settings.
- Button "Apply Settings" activates the preset settings for the selected test case. Further modification of the generator settings is still possible. Signal generation starts with the first trigger event.

General workflow for creating complex test scenarios

With the "Test Case Wizard", you can create highly complex test scenarios with just a few keystrokes, see the following example:

- 1. Preset the signal generator
- 2. Open the "Baseband > 3GPP FDD > Test Case Wizard" dialog
- 3. Select one of the provided test cases
- 4. Enter the specific settings for the selected test case , e.g. frequency, level, ...
- 5. Execute "Apply Settings" to activate the selected configuration
- 6. Enable the RF output and further refine the generator settings if required
- 7. Start signal generation by a trigger from the base station at connector USER3 (default configuration).

7.1.1 General Considerations

Test Frequencies

For 3GPP-FDD, several paired frequency bands are used. The following table shows start and stop frequencies of both uplink (UE transmit, node B receive) and downlink (node B transmit, UE receive) frequency bands according to 3GPP.

Operating band	Uplink frequencies UE transmit, node B receive	Downlink frequencies UE receive, node B transmit
1	1920 MHz to 1980 MHz	2110 MHz to 2170 MHz
П	1850 MHz to 1910 MHz	1930 MHz to 1990 MHz
Ш	1710 MHz to 1785 MHz	1805 MHz to 1880 MHz
IV	1710 MHz to 1755 MHz	2110 MHz to 2155 MHz

Operating band	Uplink frequencies UE transmit, node B receive	Downlink frequencies UE receive, node B transmit
V	824 MHz to 849MHz	869 MHz to 894MHz
VI	830 MHz to 840 MHz	875 MHz to 885 MHz

The measurements that have to be performed according to 3GPP in order to verify proper operation of FDD systems apply to appropriate frequencies in the bottom, middle and top of the operating frequency band of the base station (BS). These frequencies are denoted as RF channels B (bottom), M (middle) and T (top).

Reference Frequency

When building up the measurement setups according to TS 25.141 it might be useful that all the instruments share a common reference clock. However, after "Preset" the signal generator uses its internal clock reference. In order to feed in the clock of an external clock the RF module configuration should be switched to external reference frequency.

In the external reference mode an external signal with selectable frequency and defined level must be input at the REF IN connector. This signal is output at the REF OUT connector. The reference frequency setting is effective for both paths. For very good reference sources of high spectral purity a wideband setting is provided.

Trigger Signal

For test cases with channel coded signal, e.g. an activated RMC, the base station that triggers the signal generation must emit an 'SFN (System Frame Number) mod 4' periodic trigger. A simple SFN periodic trigger probably will disturb the channel coding scheme.

Baseband Clock

The clock source is automatically switched to internal when the test case settings are activated.

Improvement of signal quality

Improvement of signal quality is possible via several settings:

- Use the "I/Q Mod > I/Q Modulator > Internal Baseband > Baseband Gain > 2dB" parameter to select a improved ACLR performance.
- In the "Automatic Level Control Settings" menu the RF output level can be recalibrated with "Search Once" in "Sample&Hold" mode. This is recommended if in CW mode the signal/intermodulation ratio is to be improved for multi-transmitter measurements. With setting "Auto", the level control is automatically adapted to the operating conditions, it may cause increased intermodulations, however.
- In the "User Correction" menu a list of correction values can be created and subsequently activated. Thus, the frequency response of the test setup can be taken into account.

 In order to compensate cable loss and additionally inserted attenuators, the RF level can directly be adjusted in the "Level" input field.

7.1.2 General Settings

In the General Settings section the edit mode and the general signal generator parameters are set.

Test Case

Selects the test case.

The following table gives an overview of the available test cases, the type of signal transmitted by the signal generator and the required additional options besides the basic configuration. An equipment layout as required for 3GPP FDD signal generation for one-path instruments is assumed to be the basic configuration.

Table 7-1: Transmitter Tests

TS 25.141 chapter	Test case	Generator Signal	Additional options
6.4.2	Power control steps: Output power dynamics	Uplink	-
6.6	Transmit intermodulation	Interferer (downlink)	-

Table 7-2: Receiver Tests

TS 24.141 chapter	Test case	Generator Signal	Additional signal gen- erator options
7.2	Reference sensitivity level	Uplink	-
7.3	Dynamic range	Uplink, AWGN	R&S SMW-K62
7.4	Adjacent Channel Selec- tivity (ACS)	Uplink, Interferer	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-B10 2xR&S SMW-K42
7.5	Blocking characteristics	Uplink, Interferer	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-B10 2xR&S SMW-K42
7.6	Intermodulation charac- teristics	Uplink, 2 x Interferer	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-B10 2xR&S SMW-K42 R&S SMW-K62
7.8	Verification of the inter- nal BER calculation	Uplink	-

TS 24.141 chapter	Test case	Generator Signal	Additional signal gen- erator options
8.2.1	Performance require- ment - Demodulation in static propagation conditions: Demodulation of DCH	Uplink, AWGN	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62
8.3.1	Performance require- ment - Demodulation of DCH in multipath fading condi- tions: Multipath fading case 1	Uplink, AWGN Fading	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62 R&S SMW-B14/K71
8.3.2	Performance require- ment - Demodulation of DCH in multipath fading condi- tions: Multipath fading case 2	Uplink, AWGN Fading	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62 R&S SMW-B14/K71
8.3.3	Performance require- ment - Demodulation of DCH in multipath fading condi- tions: Multipath fading case 3	Uplink AWGN Fading	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62 R&S SMW-B14/K71
8.3.4	Performance require- ment - Demodulation of DCH in multipath fading condi- tions: Multipath fading case 4	Uplink AWGN Fading	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62 R&S SMW-B14/K71
8.4	Demodulation of DCH in moving propagation con- ditions	Uplink AWGN Fading	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62 R&S SMW-B14/K71
8.5	Demodulation of DCH in birth/death propagation conditions	Uplink AWGN Fading	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62 R&S SMW-B14/K71
8.6	Verification of the inter- nal BLER calculation	Uplink	R&S SMW-B20x R&S SMW-B13T
8.8.1	RACH performance: RACH preamble detec- tion in static propagation conditions	Uplink AWGN	R&S SMW-B20x R&S SMW-B13T 2xR&S SMW-K62

TS 24.141 chapter	Test case	Generator Signal	Additional signal gen- erator options
8.8.2	RACH performance:	Uplink	R&S SMW-B20x
	RACH preamble detec- tion in multipath fading case 3	AWGN	R&S SMW-B13T
		Fading	2xR&S SMW-K62
			R&S SMW-B14/K71
8.8.3	RACH performance:	Uplink	R&S SMW-B20x
	Demodulation of RACH	AWGN	R&S SMW-B13T
	message in static propa- gation conditions		2xR&S SMW-K62
8.8.4	RACH performance:	Uplink	B20x, RF path B
	Demodulation of RACH	AWGN	R&S SMW-B20x
	message in multipath fading case 3	Fading	R&S SMW-B13T
			2xR&S SMW-K62
			R&S SMW-B14/K71
8.9.1	CPCH performance:	Uplink	R&S SMW-B20x
	CPCH access preamble	AWGN	R&S SMW-B13T
	and collision detection, preamble detection in static propagation condi- tions		2xR&S SMW-K62
8.9.2	CPCH performance:	Uplink	R&S SMW-B20x
	CPCH access preamble	AWGN	R&S SMW-B13T
	and collision detection, preamble detection in multipath fading case 3	Fading	2xR&S SMW-K62
			R&S SMW-B14/K71
8.9.3	CPCH performance:	Uplink	R&S SMW-B20x
	Demodulation of CPCH	AWGN	R&S SMW-B13T
	message in static propa- gation conditions		2xR&S SMW-K62
8.9.4	CPCH performance:	Uplink	R&S SMW-B20x
	Demodulation of CPCH	AWGN	R&S SMW-B13T
	message in multipath fading case 3	Fading	2xR&S SMW-K62
			R&S SMW-B14/K71

Remote command:

[:SOURce]:BB:W3GPp:TS25141:TCASe on page 557

Edit Mode

Selects the edit mode.

"According to Standard"

Only settings in compliance with TS 25.141 are possible in the wizard panel.

"User Definable"

A wider range of settings is possible in the wizard panel.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:EMODe on page 550

Trigger Configuration

Selects the trigger configuration. The trigger is used to synchronize the signal generator to the other equipment.

- "Auto" The trigger settings are customized for the selected test case. In most cases trigger setting "Armed Auto" with external trigger source "External Trigger 1" is used. Unless otherwise noted the trigger delay is set equal to zero. Thus, the base station frame timing is able to synchronize the signal generator by a SFN (System Frame Number) periodic trigger. If the signal generator offers a channel coded signal (as all the Reference Measurements Channels require) the base station must emit a 'SFN mod 4' periodic trigger.
- "Unchanged" The current trigger settings of the signal generator are retained unchanged.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:TRIGger on page 558

Marker Configuration

Selects the marker configuration. The marker can be used to synchronize the measuring equipment to the signal generator.

"Auto"	The marker settings are customized for the selected test case. In
	most cases "Radio Frame" markers are output. Unless otherwise
	noted the marker delays are set equal to zero.
"Unchanged"	The current marker settings of the signal generator are retained

"Unchanged" The current marker settings of the signal generator are retained unchanged.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:TRIGger:OUTPut on page 558

Diversity

Selects the signal routing according to the base station's diversity processing capability.

"ON" The test signal is routed to both RF outputs.

"Off" The test signal is routed to the selected RF output.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:RXDiversity on page 556

Baseband A Signal Routing

Selects the signal routing for baseband A signal which in most test cases represents the wanted signal (exception test case 6.6).

- "A" The baseband signal A is routed to RF output A.
- "B" The baseband signal A is routed to RF output B.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:ROUTe on page 556

7.1.3 Basestation Configuration

The base station parameters are input in the "Basestation Configuration" section.

Scrambling Code (hex)

Enters the scrambling code.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:SCODe on page 557

Scrambling Mode

Sets the type of scrambling code.

With scrambling code, a distinction is made between "Long" and "Short Scrambling Code" for uplink signals. For downlink signals (test case 6.6) the scrambling code generator can be switched on and off.

"On " (downlink only)

Enables scrambling code generator.

"Off" Disables scrambling code generator for test purposes.

"Long Scrambling Code"

(uplink only) Sets the long scrambling code.

"Short Scrambling Code"

(uplink only) Sets short scrambling code.

Remote command: [:SOURce]:BB:W3GPp:TS25141:SCODe:MODE on page 557

Power Class

Enters the base station power class. The selected power class determines the output level of the signal generator. The output level is indicated in the "Wanted Signal" section of the Wizard panel.

For edit mode "User Definable", the output level can be set in the "Wanted Signal" section of the Wizard panel.

"Wide Area BS"

Enables power class wider area BS

"Medium Range BS"

Enables power class medium range BS

"Local Area BS"

Enables power class local area BS

Receiver Tests

```
Remote command:
```

[:SOURce]:BB:W3GPp:TS25141:BSPClass on page 549

7.1.4 Apply

Apply Settings

Activates the current settings of the test case wizard.

Initialization of the signal generator with the test case settings is performed by a partial reset that includes only the baseband, fading and AWGN module and the RF frequency and RF level settings. Other settings of the signal generator are not altered.

Before triggering the signal generator the user still can change these other settings. This is particularly useful when compensating for cable loss and additionally inserted attenuators by adjusting the RF power levels is required.

Signal generation is started at the first trigger received by the generator. The RF output is not activated /deactivated by the test case wizard, so care has to be taken that RF State is On at the beginning of the measurement.

Note: For safety reasons the RF is not active unless the button RF ON has been pressed.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:TCASe:EXECute on page 558

7.2 Receiver Tests

7.2.1 Overview

7.2.1.1 Basic Configuration

The test cases for receiver tests require at least the following equipment layout for the signal generator:

- Digital Standard 3GPP FDD (R&S SMW-K42)
- Arbitrary Waveform Generator (R&S SMW-B10),
- Baseband Main module (R&S SMW-B13),
- Frequency option (R&S SMW-B10x).

If the test case requires further options they are listed together with the description of the test case.

Receiver test can be performed with the signal generator only, i.e. without additional measuring equipment.

7.2.1.2 Test Setups - Receiver Tests

The tests can be performed using the standard test setup according to TS 25.141. Test setups beside the two standard test setups described below are specified at the Test Case description.

Standard Test Setup - One Path

In case of two-path instruments, signal routing to path A is assumed. RF port A outputs the wanted signal (with or without fading and/or interference) and is connected to the Rx port of the base station. The signal generator will start signal generation at the first received BS frame trigger.

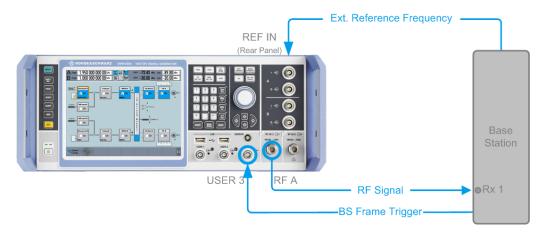


Figure 7-1: Standard Test Setup (One Path)

For two-path instruments it is also possible to route baseband signal A to RF output B and connect RF output B to the Rx port of the base station.

Standard Test Setup - Two Paths

For two-paths measurements, the test cases always require option second RF path, a option Baseband Main Module (R&S SMW-B13T) and at least one option to generate the interfering signal in addition to the basic configuration. The signal routing can be selected, the wanted signal can be provided either at output RF A or at output RF B.

The signal generator outputs the reference measurement channel signal (= wanted signal) at output RF A and the interfering signal(s) at output RF B. After combining the two(three) signals the sum signal is fed into the base station Rx port. The signal generator will start signal generation at the first received BS frame trigger.

Receiver Tests

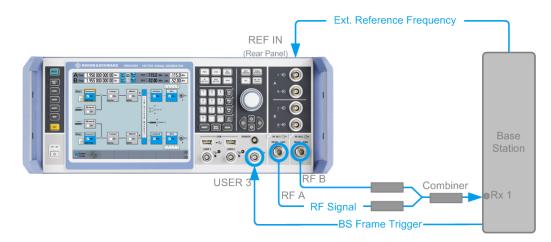


Figure 7-2: Standard Test Setup (Two Paths)

Standard Test Setup - Diversity Measurements

For **diversity measurements**, the test cases always require at option R&S SMW-B20x and R&S SMW-B13T in addition to the basic configuration. The signal routing is fixed.

RF output A and RF output B transmit the corrupted reference measurement channel signal (wanted signal) and are connected to the Rx ports of the base station for diversity reception. The signal generator will start signal generation at the first received BS frame trigger.

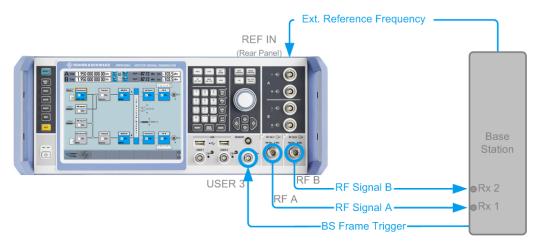


Figure 7-3: Standard Test Setup (Diversity Measurements)

As signal routing takes place at the output of the baseband block, the interference settings of the two paths are identical for diversity measurments.

7.2.1.3 Carrying Out a Receiver Test Measurement

The following instructions lists the general steps for performing a receiver test. Specific requirements are described together with the individual test case.

- 1. Set the base station to the basic state
 - a) Initialize the base station,
 - b) Set the scrambling scheme,
 - c) Set the frequency
 - d) Set the base station to receive the Reference Measurement Channel (for most test cases),
- 2. Set the signal generator to the basic state
 - a) reset the signal generator.
- 3. Set the test case wizard
 - a) Open the 3GPP FDD dialog in the baseband block
 - b) Open the Test Case Wizard and select Test Case The General Settings parameters are preset according to TS 25.141
 - c) Enter scrambling code and scrambling mode according to the base station scrambling scheme.
 - d) Enter additional required parameters, e.g. power class of base station.
 - e) Enter the test frequency (e.g. M). It must be the same as the base station has been set to.
 - f) Activate the settings with the "Apply Settings" button.
 The signal generator is now ready to start signal generation
- 4. Switch on RF output
- If required, make additional settings (e.g. in the "I/Q Mod" or "RF" block) or change test case settings (e.g. in the "Fading" block)
- 6. Start the measurement
 - a) Send a start trigger impulse (e.g. SFN modulo 4) from the base station to the signal generator.

The signal generator will start signal generation.

7. Calculate the result

The base station internally calculates the BER, BLER or Pd depending on the test case. This value is compared to the required value.

7.2.1.4 General Wanted Signal Parameters

The following parameters are available for all receiver tests. Specific parameters are listed together with the Test Case description.

Wanted Signal State - Receiver Tests

Enables/disables the signal generation of the wanted 3GPP signal.

In edit mode "According to Standard" the state is fixed to "On".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:STATe on page 565

RMC - Receiver Tests

Sets the reference measurement channel.

In edit mode "According to Standard" the selection of the reference measurement channel is restricted.

In edit mode "User definable", all following reference measurement channels are available for selection:

"RMC 12.2 kbps"

12.2 kbps measurement channel

"RMC 64 kbps" 64 kbps measurement channel

"RMC 144 kbps"

144 kbps measurement channel

"RMC 384 kbps"

384 kbps measurement channel

"AMR 12.2 kbps"

channel coding for the AMR coder

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:CCODing:TYPE on page 562

Wanted Signal Frequency - Receiver Tests

Sets the RF frequency of the wanted signal.

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:FREQuency on page 564

Wanted Signal Level - Receiver Tests

Sets the RF level in edit mode "User Definable".

In edit mode "According to Standard" the RF level is determined by the selected "Power Class".

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:POWer on page 565

7.2.2 Receiver Characteristics

7.2.2.1 Test Case 7.2 - Reference Sensitivity Level

The test case requires the basic configuration and is performed using the standard test setup for one path. The signal generator outputs a reference measurement channel signal.

Parameter	Value
Frequency	B, M and T
RMC	12.2 kbps
Scrambling code	Any
TPC function	OFF

Table 7-3: The following table lists the settings on the base station:

Test Purpose and Test Settings - Test Case 7.2

The test case verifies that a BS receiver has the capability to correctly demodulate the signal sent by the signal generator at the specified (low) reference sensitivity power level.

The test is passed when the resulting BER (calculated internally by the BS) is below a 0.001 at the test frequencies B, M, and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

The reference sensitivity level is the minimum mean power received at the antenna connector at which the BER shall not exceed the specific value indicated in subclause 7.2.2. The test is set up according to Figure B.7 and performed without interfering signal power applied to the BS antenna connector. For duplex operation, the measurement configuration principle is indicated for one duplex branch in Figure B.7. For internal BER calculation an example of the test connection is as shown in figure B.7. The reference point for signal power is at the input of the receiver (antenna connector).

The measurement must be made at the three frequencies B, M and T.

3GPP FDD: Test Case Wizard (TS 25.141)				_ ×
	1.948	1.949 1.95	1.951	1.952
General Base Station Wanted Sigr	al	Frequency / GHz		
Test Case 7.2 Reference Sensitivity Lev	rel			-
Edit Mode		According to Standard -	Marker Configuratio	n Auto -
Trigger Configuration		Auto (Ext. Trigger 1)		
Baseband A Signal Routing		To Path and RF Port A ⊷		
7.2 Reference Sensitivity Level				Apply
General Base Station Wanted Sign	al			
Scrambling Code (hex)	0000 00			
Scrambling Mode	Long Scrambli	ing Code		•
Power Class	Wide Area BS	;		·
General Base Station Wanted Sign	al			
State Off On	R	eference Measurement C	hannel RMC 12.2 kb	ps -

The settings of the wanted signal are described in Chapter 7.2.1.4, "General Wanted Signal Parameters", on page 289.

Power Level

7.2.2.2 Test Case 7.3 - Dynamic Range

RF Frequency

The test case is performed using the standard test setup for one path.

It requires option K62 - Additional White Gaussian Noise (AWGN) in addition to the basic configuration.

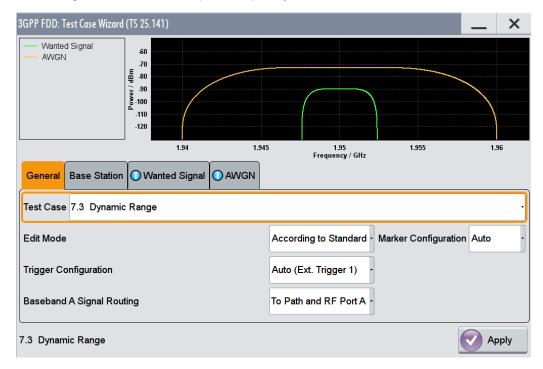
The signal generator outputs a reference measurement channel signal disturbed by an interfering AWGN signal.

The following table lists the settings on the base station:

1.950 000 000 00 GHz

-120.3 dBm

Parameter	Value
Frequency	B, M and T
RMC	12.2 kbps
Scrambling code	Any


Test Purpose and Test Settings - Test Case 7.3

The test case verifies that a BS receiver has the capability to demodulate the useful signal sent by the signal generator even when it is superimposed by a heavy AWGN (Additive White Gaussian Noise) signal.

The test is passed when the resulting BER (calculated internally by the BS) is below 0.001 at the test frequencies B, M, and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141

Receiver dynamic range is the receiver ability to handle a rise of interference in the reception frequency channel. The receiver shall fulfil a specified BER requirement for a specified sensitivity degradation of the wanted signal in the presence of an interfering AWGN signal in the same reception frequency channel.

-73.00 dBm

General Base Station Wanted Signal	
Scrambling Code (hex)	0000 00
Scrambling Mode	Long Scrambling Code
Power Class	Wide Area BS
General Base Station Wanted Signa	
State Off	On Reference Measurement Channel RMC 12.2 kbps ·
RF Frequency 1.950 00	00 000 00 GHz · Power Level -89.80 dBm ·
General Base Station OWanted Signal	
State Off	On

Besides the settings described for all receiver tests, AWGN configuration is possible in edit mode "User Definable". In edit mode "According to Standard" the AWGN settings are preset:

-16.80 dB - Power Level (within 3.84 MHz BW)

AWGN State - Test Case 7.3

Enables/disables the generation of the AWGN signal.

In edit mode "According to Standard" the state is fixed to "On".

C/N - Test Case 7.3

C/N

Sets the carrier/noise ratio.

In edit mode "According to Standard" the state is fixed to -16.8 dB.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:CNRatio on page 547

Power Level - Test Case 7.3

Sets the AWGN level in edit mode "User Definable".

In edit mode "According to Standard" the AWGN level is determined by the selected "Power Class".

- -73 dB for Wide Area BS
- -63 dB for Medium Range BS
- -59 dB for Local Area BS

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe on page 548

7.2.2.3 Test Case 7.4 - Adjacent Channel Selectivity

In addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B13T
- option R&S SMW-K42

It is performed using the standard test setup for two paths.

The signal generator outputs the reference measurement channel signal (= wanted signal) at output RF A(B) and the adjacent channel interfering signal at output RF B(A). After combining the two signals the sum signal is fed into the base station Rx port. The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T.

The following table lists the settings on the base station:

Parameter	Value
Frequency	B, M and T
RMC	12.2 kbps
Scrambling code	Any

Test Purpose and Test Settings - Test Case 7.4

The test case verifies that a BS receiver has the capability to demodulate a signal that is sent by the signal generator but superimposed by a heavy WCDMA signal in the adjacent channel.

The test is passed when the resulting BER (calculated internally by the BS) is below 0.001 at the test frequencies B, M, and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

Adjacent channel selectivity (ACS) is a measure of the receiver ability to receive a wanted signal at is assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the center frequency of the assigned channel. ACS is the ratio of the receiver filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The interference signal is offset from the wanted signal by the frequency offset Fuw. The interference signal shall be a W-CDMA signal as specified in Annex I.

State	Off On	
Frequency Offset	+5 MHz · C/I	-63.00 dB -
Modulation	W-CDMA (3GPP FDD)	

Besides the settings described for all receiver test, interferer configuration is possible in edit mode "User Definable". In edit mode "According to Standard" the settings are preset.

Interferer State - Test Case 7.4

Enables/disables the signal generation of the interfering uplink signal in the second path.

In edit mode "According to Standard" the state is fixed to "On".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:STATe on page 555

Frequency Offset - Test Case 7.4

Enters the frequency offset of the interfering signal versus the wanted signal.

In edit mode "According to Standard" the choice is limited to +/- 5 MHz.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:FOFFset on page 552

C to I - Test Case 7.4

Enters the ratio of wanted signal level to interfering signal level.

In edit mode "According to Standard" the value is fixed to - 63 dB:

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CNRatio on page 551

Interferer Modulation - Test Case 7.4

Selects the type of modulation for the interfering uplink signal in the second path. In edit mode "According to Standard" the modulation is fixed to "W-CDMA (3GPP FDD)".

"W-CDMA (3GPP FDD)"

A 3GPP FDD uplink signal with the following characteristic is generated for path B.

- DPCCH + DPDCH mode
- DPDCH with 240 ksps, 0 dB relative power, PRBS23 data source
- DPCCH with -5.46 dB relative power and slot format 2
- Same scrambling code as the wanted signal

("3GPP FDD" dialog)

"QPSK (3.84 MHz, Root Cosine 0.22)"

A QPSK signal (3.84 MHz bandwidth, root cosine filter 0.22, PRBS9 data source) is generated for path B ("Custom Dig Mod" dialog).

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:TYPE on page 556

7.2.2.4 Test Case 7.5 - Blocking Characteristics

In addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B10
- option R&S SMW-B13T
- option R&S SMW-K42

It is performed using the standard test setup for two paths.

The signal generator provides the reference measurement channel signal (= wanted signal) at output RF A and the interfering signal with a selectable frequency offset at output RF B. After combining the two signals the sum signal is fed into the base station Rx port. The signal generator will start signal generation at the first received BS frame trigger sent.

The measurement must be made at the frequency M.

The following table lists the settings on the base station:

Parameter	Value
Frequency	Μ
RMC	12.2 kbps
Scrambling code	Any

In comparison with test case 7.4 this test case requires very large offset frequencies for the interfering signal. Therefore, a second RF output is always required. Due to the maximum frequency range of 6 GHz (option B106), the test case can not be performed at all frequency offsets required by the standard (1 MHz to 12.75 GHz).

Test Purpose and Test Settings - Test Case 7.5

The test case verifies that a BS receiver has the capability to demodulate a signal that is sent by the signal generator but superimposed by a heavy interfering signal in the not adjacent channel.

The test is passed when the resulting BER (calculated internally by the BS) is below 0.001 at the test frequency M. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

The blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the adjacent channels. The blocking performance requirement applies as specified in tables 7.4A to 7.4J.

The requirements shall apply to the indicated base station class, depending on which frequency band is used. The requirements in Tables 7.4D to 7.4J may be applied for the protection of FDD BS receivers when GSM900, DCS1800, PCS1900, GSM850 and/or FDD BS operating in Bands I to VI are co-located with a UTRA FDD BS.

3GPP FDD: Test Case Wizard (TS 25.14	11)			_ ×
Wanted Signal Interferer 40 80 80 5 7 9 .100 4.120				
-140				
_	1.948 1	.95 1.952 Frequency / GHz	1.954	1.956
General Base Station 🔾 Wa	nted Signal 이 Interferer			
Test Case 7.5 Blocking Charac	teristics			
Edit Mode		According to Standard ·	Marker Configuration	n Auto -
Trigger Configuration		Auto (Ext. Trigger 1)]	
Baseband A Signal Routing		To Path and RF Port A		
7.5 Blocking Characteristics				Apply
General Base Station O War	nted Signal 🔘 Interferer			
Scrambling Code (hex)	0000 00			
Scrambling Mode	Long Scrambli	ng Code		•
Power Class	Wide Area BS			·
General Base Station Wa	nted Signal			
State	Off Of	n Blocking Scenario	Wideband	Blocking

General	Base Station	○ Wanted Signal	O Interferer		
State		Off	01	ı	
Frequency	Offset		4 MHz	Power Level	-40.00 dBm •
Modulation		W-CDM	A (3GPP FDD)	•	

Besides the settings described for all receiver test, the following settings are possible in edit mode "User Definable". In edit mode "According to Standard" most settings are preset.

Additional settings in the "Wanted Signal" section:

Blocking Scenario - Test Case 7.5

Selects the type of blocking scenario in edit mode "According to Standard".

The type of blocking scenario presets the selected "Interferer Modulation" and the "Power Level".

"Wideband Blocking"

The interferer signal for wide band blocking depends on the set "Operating Band" and "RF Frequency":

- As long as the interferer "RF frequency" lies within or close to the selected "Operating Band", a "3GPP FDD" uplink signal with a defined power level (depending on the selected Power Class and RMC) is generated for path B.
- When the interferer "RF Frequency" lies outside the selected "Operating Band", a "CW carrier" interfering signal with a defined power level (depending on the selected Power Class and RMC) is generated for path B.
- "Collocated BS Blocking"

A CW carrier interfering signal with a defined power level (depending on the selected Power Class and RMC) is generated for path B ("RF" block)

"Narrowband Blocking"

A GMSK (270.833 kHz) interfering signal with a defined power level (depending on the selected Power Class and RMC) is generated for path B ("Custom Dig Mod" dialog).

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:BTYPe on page 559

Operating Band - Test Case 7.5

Selects the operating band of the base station for "Wideband Blocking". The operating band is required for the calculation of power levels and interferer modulation.

- Operating band I: (1920 1980 MHz)
- Operating band II: (1850 1910 MHz)
- Operating band III: (1710 1785 MHz)
- Operating band IV: (1710 1755 MHz)
- Operating band V: (824 849 MHz)
- Operating band VI: (830 840 MHz)

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:OBANd on page 564

Interferer Signal

Settings in the "Interferer Signal" section:

Interferer State - Test Case 7.5

Enables/disables the signal generation of the interfering signal in the second path. In edit mode "According to Standard" the state is fixed to "On".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:STATe on page 555

Frequency Offset - Test Case 7.5

Enters the frequency offset of the interfering signal versus the wanted signal.

Remote command: [:SOURce]:BB:W3GPp:TS25141:IFSignal:FOFFset on page 552

Power Level - Test Case 7.5

Enters the level of the interfering signal.

In edit mode "According to Standard" the value is fixed to a value determined by the selected "Blocking Scenario", the "RF frequency "and "Frequency Offset" and the base station "Power Class".

For blocking scenario "Colocated BS Blocking" several power settings are permitted by the standard. The following table show the blocking requirements for Medium Range and Local Area BS when co-located with BS in other bands.

For blocking performance requirement tables see "Blocking performance requirements" on page 302.

Remote command: [:SOURce]:BB:W3GPp:TS25141:IFSignal:POWer on page 555

Interferer Modulation - Test Case 7.5

Selects the type of modulation for the adjacent channel interfering signal at output RF B.

In edit mode "According to Standard" the modulation is determined by the selected "Blocking Scenario".

"W-CDMA (3GPP FDD)"

A 3GPP FDD uplink signal with the following characteristic is generated for path B.

- DPCCH + DPDCH mode
- DPDCH with 240 ksps, 0 dB relative power, PRBS23 data source
- DPCCH with -5.46 dB relative power and slot format 2
- Same scrambling code as the wanted signal ("3GPP FDD" dialog)

"QPSK (3.84 MHz, Root Cosine 0.22)"

A QPSK signal (3.84 MHz bandwidth, root cosine filter 0.22, PRBS9 data source) is generated for path B ("Custom Dig Mod" dialog).

"CW Carrier" A carrier-only signal is generated for path B; the frequency and level of the CW signal are determined by the parameters "Frequency Off-set" and "Power Level".

"GMSK (270.833 kHz)"

A GMSK signal (270.833 kHz bandwidth, PRBS9 data source) is generated for path B ("Custom Dig Mod" dialog).

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:TYPE on page 556

Blocking performance requirements

The following tables are taken from TS25141 (V6.6.0), chapter 7.5.5.

Blocking performance requirement for Medium Range BS when co-located with BS in other bands

Co-located BS type	Center Frequency of Interfering Signal	Interfering Signal mean power
Micro GSM850	869 – 894 MHz	-3 dBm
MR UTRA-FDD Band V	869 – 894 MHz	+8 dBm
MR UTRA-FDD Band III	1805 – 1880 MHz	+8 dBm
Micro DCS1800	1805 – 1880 MHz	+5 dBm
Micro PCS1900	1930 – 1990 MHz	+5 dBm
MR UTRA-FDD Band II	1930 – 1990 MHz	+8 dBm

Blocking performance requirement for Local Area BS when co-located with BS in other bands

Co-located BS type	Center Frequency of Interfering Signal	Interfering Signal mean power
LA UTRA-FDD Band V	869 – 894 MHz	-6 dBm
Pico GSM850	869 – 894 MHz	-7 dBm
LA UTRA-FDD Band III	1805 – 1880 MHz	-6 dBm
Pico DCS1800	1805 – 1880 MHz	-4 dBm
LA UTRA-FDD Band II	1930 – 1990 MHz	-6 dBm
Pico PCS1900	1930 – 1990 MHz	-4 dBm

Blocking characteristics for Wide Area BS

Oper- ating Band	Center Frequency of Interfering Signal	Interfering Sig- nal mean power	Wanted Signal mean power	Minimum Off- set of Interfer- ing Signal	Type of Inter- fering Signal
I	1920 - 1980 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
	1900 - 1920 MHz 1980 - 2000 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
	1 MHz -1900 MHz 2000 MHz - 12750 MHz	-15 dBm	-115 dBm		CW carrier

Center Frequency of Interfering Signal	Interfering Sig- nal mean power	Wanted Signal mean power	Minimum Off- set of Interfer- ing Signal	Type of Inter- fering Signal
1850 - 1910 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1830 - 1850 MHz 1910 - 1930 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal *
1 MHz - 1830 MHz 1930 MHz - 12750 MHz	-15 dBm	-115 dBm		CW carrier
1710- 1785 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1690 - 1710 MHz 1785- 1805 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1 MHz - 1690 MHz 1805 MHz - 12750 MHz	-15 dBm	-115 dBm		CW carrier
1710- 1755 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1690 - 1710 MHz 1755- 1775 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1 MHz - 1690 MHz 1775 MHz - 12750 MHz	-15 dBm	-115 dBm		CW carrier
824-849 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
804-824 MHz 849-869 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1 MHz- 804 MHz 869 MHz - 12750 MHz	-15 dBm	-115 dBm		CW carrier
810- 830 MHz 840- 860 MHz	-40 dBm	-115 dBm	10 MHz	WCDMA signal
1 MHz- 810 MHz 860 MHz- 12750 MHz	-15 dBm	-115 dBm		CW carrier
	Interfering Signal 1850 - 1910 MHz 1830 - 1850 MHz 1910 - 1930 MHz 1 MHz - 1830 MHz 1930 MHz - 12750 MHz 1710- 1785 MHz 1690 - 1710 MHz 1785- 1805 MHz 1 MHz - 1690 MHz 1805 MHz - 12750 MHz 1710- 1755 MHz 1690 - 1710 MHz 1755- 1805 MHz 1710- 1755 MHz 1690 - 1710 MHz 1755- 1775 MHz 1 MHz - 1690 MHz 1775 MHz - 12750 MHz 1 MHz - 1690 MHz 1775 MHz - 12750 MHz 1 MHz - 1690 MHz 1775 MHz - 12750 MHz 1 MHz - 1690 MHz 1775 MHz - 12750 MHz 1 MHz - 12750 MHz 804-824 MHz 804-824 MHz 849-869 MHz 1 MHz- 804 MHz 869 MHz - 12750 MHz 810- 830 MHz 810- 830 MHz 810- 830 MHz 1 MHz- 810 MHz	Interfering Signal nal mean power 1850 - 1910 MHz -40 dBm 1830 - 1850 MHz -40 dBm 1910 - 1930 MHz -40 dBm 1 MHz - 1830 MHz -15 dBm 1930 MHz - 12750 MHz -40 dBm 1710- 1785 MHz -40 dBm 1690 - 1710 MHz -40 dBm 1785- 1805 MHz -40 dBm 1785- 1805 MHz -15 dBm 1805 MHz - 12750 MHz -15 dBm 1710- 1755 MHz -40 dBm 1690 - 1710 MHz -40 dBm 1710- 1755 MHz -40 dBm 1690 - 1710 MHz -40 dBm 1755- 1775 MHz -40 dBm 1775 MHz - 12750 MHz -15 dBm 1 MHz - 1690 MHz -15 dBm 1775 MHz - 12750 MHz -40 dBm 1 MHz - 804 MHz -40 dBm 804-824 MHz -40 dBm 810- 830 MHz -15 dBm 1 MHz - 804 MHz -15 dBm 810- 830 MHz -40 dBm 810- 830 MHz -15 dBm 1 MHz- 810 MHz -15 dBm	Interfering Signal nal mean power mean power 1850 - 1910 MHz -40 dBm -115 dBm 1830 - 1850 MHz -40 dBm -115 dBm 1910 - 1930 MHz -40 dBm -115 dBm 1910 - 1930 MHz -15 dBm -115 dBm 1910 - 1930 MHz -15 dBm -115 dBm 1910 - 1930 MHz -15 dBm -115 dBm 1930 MHz - 12750 MHz -40 dBm -115 dBm 1710- 1785 MHz -40 dBm -115 dBm 1690 - 1710 MHz -40 dBm -115 dBm 170- 1755 MHz -40 dBm -115 dBm 1710- 1755 MHz -40 dBm -115 dBm 1755- 1775 MHz -40 dBm -115 dBm 1690 - 1710 MHz -40 dBm -115 dBm 1755- 1775 MHz -15 dBm -115 dBm 1755 MHz -15 dBm -115 dBm 1775 MHz 12750 MHz -15 dBm 11842 - 809 MHz -40 dBm -115 dBm 804-824 MHz -40 dBm -115 dBm 849-869 MHz -15 dBm -115 dBm	Interfering Signal nal mean power mean power set of Interfering Signal 1850 - 1910 MHz -40 dBm -115 dBm 10 MHz 1830 - 1850 MHz -40 dBm -115 dBm 10 MHz 1830 - 1850 MHz -40 dBm -115 dBm 10 MHz 1910 - 1930 MHz -15 dBm -115 dBm 10 MHz 1910 - 1930 MHz -15 dBm -115 dBm 10 MHz 1930 MHz - 12750 MHz -40 dBm -115 dBm 10 MHz 1690 - 1710 MHz -40 dBm -115 dBm 10 MHz 1785- 1805 MHz -40 dBm -115 dBm 10 MHz 1805 MHz - 12750 MHz -40 dBm -115 dBm 10 MHz 1710 - 1755 MHz -40 dBm -115 dBm 10 MHz 1710 - 1755 MHz -40 dBm -115 dBm 10 MHz 1690 - 1710 MHz -40 dBm -115 dBm 10 MHz 1755 - 1775 MHz -15 dBm -115 dBm 10 MHz 1804 - 824 MHz -40 dBm -115 dBm 10 MHz 804-824 MHz -40 dBm -115 dBm <td< td=""></td<>

*: The characteristics of the W-CDMA interference signal are specified in Annex I of TS 25.141.

Blocking performance requirement for Wide Area BS when co-located with BS in
other bands.

Co-located BS type	Center Frequency of Inter- fering Signal	Interfering Sig- nal mean power	Wanted Signal mean power	Type of Inter- fering Signal
Macro GSM900	921-960 MHz	+16 dBm	-115 dBm	CW carrier
Macro DCS1800	1805- 1880 MHz	+16 dBm	-115 dBm	CW carrier

Co-located BS type	Center Frequency of Inter- fering Signal	Interfering Sig- nal mean power	Wanted Signal mean power	Type of Inter- fering Signal
Macro PCS1900	1930- 1990 MHz	+16 dBm	-115 dBm	CW carrier
Macro GSM850	869- 894 MHz	+16 dBm	-115 dBm	CW carrier
WA UTRA-FDD Band I	2110- 2170 MHz	+16 dBm	-115 dBm	CW carrier
WA UTRA-FDD Band II	1930- 1990 MHz	+16 dBm	-115 dBm	CW carrier
WA UTRA-FDD Band III	1805- 1880 MHz	+16 dBm	-115 dBm	CW carrier
WA UTRA-FDD Band IV	2110- 2155 MHz	+16 dBm	-115 dBm	CW carrier
WA UTRA-FDD Band V	869- 894 MHz	+16 dBm	-115 dBm	CW carrier
WA UTRA-FDD Band VI	875- 885 MHz	+16 dBm	-115 dBm	CW carrier

Blocking performance requirement for Medium Range BS when co-located with BS in other bands.

Co-located BS type	Center Frequency of Inter- fering Signal	Interfering Sig- nal mean power	Wanted Signal mean power	Type of Inter- fering Signal
Micro GSM900	921-960 MHz	-3 dBm	-105 dBm	CW carrier
Micro DCS1800	1805- 1880 MHz	+5 dBm	-105 dBm	CW carrier
Micro PCS1900	1930- 1990 MHz	+5 dBm	-105 dBm	CW carrier
Micro GSM850	869- 894 MHz	-3 dBm	-105 dBm	CW carrier
MR UTRA-FDD Band I	2110- 2170 MHz	+8 dBm	-105 dBm	CW carrier
MR UTRA-FDD Band II	1930- 1990 MHz	+8 dBm	-105 dBm	CW carrier
MR UTRA-FDD Band III	1805- 1880 MHz	+8 dBm	-105 dBm	CW carrier
MR UTRA-FDD Band IV	2110- 2155 MHz	+8 dBm	-105 dBm	CW carrier
MR UTRA-FDD Band V	869- 894 MHz	+8 dBm	-105 dBm	CW carrier
MR UTRA-FDD Band VI	875- 885 MHz	+8 dBm	-105 dBm	CW carrier

Co-located BS type	Center Frequency of Inter- fering Signal	Interfering Sig- nal mean power	Wanted Signal mean power	Type of Inter- fering Signal
Pico GSM900	921-960 MHz	-7 dBm	-101 dBm	CW carrier
Pico DCS1800	1805- 1880 MHz	-4 dBm	-101 dBm	CW carrier
Pico PCS1900	Pico PCS1900 1930- 1990 MHz		-101 dBm	CW carrier
Pico GSM850	869- 894 MHz	-7 dBm	-101 dBm	CW carrier
LA UTRA-FDD Band I	2110- 2170 MHz	-6 dBm	-101 dBm	CW carrier
LA UTRA-FDD Band II	1930- 1990 MHz	-6 dBm	-101 dBm	CW carrier
LA UTRA-FDD Band III	1805- 1880 MHz	-6 dBm	-101 dBm	CW carrier
LA UTRA-FDD Band IV	2110- 2155 MHz	-6 dBm	-101 dBm	CW carrier
LA UTRA-FDD Band V	869- 894 MHz	-6 dBm	-101 dBm	CW carrier
LA UTRA-FDD Band VI	875- 885 MHz	-6 dBm	-101 dBm	CW carrier

Blocking performance requirement for Local Area BS when co-located with BS in other bands.

Blocking performance requirement (narrowband) for Wide Area BS

Operating Band	Center Frequency of Interfering Signal	Interfering Signal mean power	Wanted Sig- nal mean power	Minimum Off- set of Interfer- ing Signal	Type of Interfering Signal
11	1850 - 1910 MHz	- 47 dBm	-115 dBm	2.7 MHz	GMSK modulated*
111	1710- 1785 MHz	- 47 dBm	-115 dBm	2.8 MHz	GMSK modulated*
IV	1710- 1755 MHz	- 47 dBm	-115 dBm	2.7 MHz	GMSK modulated*
V	824- 849 MHz	- 47 dBm	-115 dBm	2.7 MHz	GMSK modulated*

* GMSK modulation as defined in TS 45.004.

Operating Band	Center Frequency of Interfering Signal	Interfering Signal mean power	Wanted Sig- nal mean power	Minimum Off- set of Interfer- ing Signal	Type of Interfering Signal
11	1850 - 1910 MHz	- 42 dBm	-105 dBm	2.7 MHz	GMSK modulated*
111	1710- 1785 MHz	- 42 dBm	-105 dBm	2.8 MHz	GMSK modulated*
IV	1710- 1755 MHz	- 42 dBm	-105 dBm	2.7 MHz	GMSK modulated*
V	824- 849 MHz	- 42 dBm	-105 dBm	2.7 MHz	GMSK modulated*

Blocking performance requirement (narrowband) for Medium Range BS

* GMSK modulation as defined in TS 45.004 [12]

Blocking performance requirement (narrowband) for Local Area BS

Operating Band	Center Frequency of Interfering Signal	Interfering Signal mean power	Wanted Sig- nal mean power	Minimum Off- set of Interfer- ing Signal	Type of Interfering Signal
11	1850 - 1910 MHz	- 37 dBm	-101 dBm	2.7 MHz	GMSK modulated*
111	1710- 1785 MHz	- 37 dBm	-101 dBm	2.8 MHz	GMSK modulated*
IV	1710- 1755 MHz	- 37 dBm	-101 dBm	2.7 MHz	GMSK modulated*
V	824- 849 MHz	- 37 dBm	-101 dBm	2.7 MHz	GMSK modulated*

* GMSK modulation as defined in TS 45.004.

7.2.2.5 Test Case 7.6 - Intermodulation Characteristics

In addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B10
- option R&S SMW-B13T
- option R&S SMW-K62
- option R&S SMW-K42

It is performed using the standard test setup for two paths.

The signal generator outputs the reference measurement channel signal (= wanted signal) at output RF A and both interfering signals (CW interferer and the WCDMA or GMSK modulated interferer) at output RF B. After combining the signals the sum signal is fed into the base station Rx port. The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at frequency M.

In qu

In order to generate both interfering signals with the desired frequency offset, a frequency offset is introduced for baseband B. This baseband frequency offset has to be added to the RF frequency B.

The following table lists the settings on the base station:

Parameter	Value
Frequency	Μ
RMC	12.2 kbps
Scrambling code	Any

Test Purpose and Test Settings - Test Case 7.6

The test case verifies that a BS receiver has the capability to demodulate a signal that is sent by the signal generator but superimposed by two heavy interfering signals in the adjacent channels, where the receiver intermodulation products disturb the wanted signal.

The test is passed when the resulting BER (calculated internally by the BS) is below 0.001 at the test frequency M. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

GPP FDD: T	est Case Wizard	(TS 25.141)							_ ×
- Interfere	d Signal er 1: CW Carrier er 2: Modulated	40 -60 80 -80 -100 -120 -140		1.95	1.955 Freq	1.96 uency / GHz	1.965	1.97	
General	Base Station	Wanted	d Signal	O Interferer	1: CW Carrier	γ	erer 2: Modula	ated Signal	
Test Case	7.6 Intermod	dulation Cha	aracterist	ics					
Edit Mode					According to	Standard -	Marker Con	figuration	Auto
Trigger Co	onfiguration				Auto (Ext. Trig	gger 1) -			
Baseband	A Signal Rout	ting			To Path and F	RF Port A			
	odulation Char		- 0'		÷ 014 0				Apply
General	Base Station		-		1: CW Carrier	O Interfe	erer 2: Modula	ated Signal	1
General	Base Station g Code (hex)			0000 00		O Interfe	rer 2: Modula	ated Signal	1
General	Base Station g Code (hex)					O Interfe	rer 2: Modula	ated Signal	1
General	Base Station g Code (hex) g Mode			0000 00	ng Code	O Interfe	erer 2: Modula	ated Signal	1
General Scrambling Scrambling Power Clas	Base Station g Code (hex) g Mode ss	O Wantec	C L	0000 00 .ong Scrambli Wide Area BS	ng Code			_	
General Scrambling Scrambling Power Clas	Base Station g Code (hex) g Mode	O Wantec	C L	0000 00 .ong Scrambli Wide Area BS	ng Code	Interfe	rer 2: Modula	ated Signal	
General Scrambling Scrambling Power Clas General	Base Station g Code (hex) g Mode ss Base Station	Wanted Wanted	L L Signal	0000 00 .ong Scrambli Wide Area BS	ng Code 1: CW Carrier In Reference M	Interfe Neasureme	rer 2: Modula	ated Signal	
General Scrambling Scrambling Power Clas General State RF Freque	Base Station g Code (hex) g Mode ss Base Station	Wantec	L L L Signal Off .950 000	0000 00 .ong Scrambli Wide Area BS	ng Code 1: CW Carrier In Reference M	Interfe Neasureme	erer 2: Modula	ated Signal RMC	; 12.2 kbps 15.0 dBm

Off (

On

10.000 000 00 MHz - Power Level

State

Frequency Offset

-48.00 dBm

General	Base Station	Wanted Signal	O Interferer 1:	: CW Carrier	O Inte	erferer 2: Modulated Sigr	
Bandwidth	п Туре		Wideband -				
State		Off	On	Modulation		W-CDMA (3GPP FDD)	•
Frequenc	y Offset	20.000) 000 00 MHz -	Power Level		ŀ	-48.00 dBm -

Besides the settings described for all receiver tests, interferer 1 and 2 configuration is possible in edit mode "User Definable". In edit mode "According to Standard" most of the settings are preset.

Interferer Bandwidth Type - Test Case 7.6

Selects the interferer scenario.

"Wideband"

- d" A 3GPP FDD uplink interfering signal with the following characteristic is generated for path B.
 - DPCCH + DPDCH mode
 - DPDCH with 240 ksps, 0 dB relative power, PRBS23 data source
 - DPCCH with -5.46 dB relative power and slot format 2
 - Same scrambling code as the wanted signal ("3GPP FDD" dialog)

The 3GPP FDD uplink interfering signal is superimposed by a CW interfering signal with a frequency of 10 MHz and a level of -48 dBm ("AWGN" dialog).

"Narrowband" GMSK interfering signal (270.833 kHz bandwidth, PRBS9 data source) is generated for path B ("Custom Dig Mod" dialog). The GMSK interfering signal is superimposed by a CW interfering signal with a frequency of 3.5 MHz and a level of -47 dBm ("AWGN" dialog).

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:BWIDth on page 550

Interferer 1 and 2 State - Test Case 7.6

Enables/disables the signal generation of the CW and modulation interfering signal in the second path.

In edit mode "According to Standard" both states are fixed to "On".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:STATe on page 552
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:STATe on page 554

Interferer 1 and 2 Frequency Offset - Test Case 7.6

Enters the frequency offset of the interfering signals versus the wanted signal.

In edit mode "According to Standard" the value is fixed to a value determined by the selected "Interferer Bandwidth".

Remote command:

```
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:FOFFset on page 551
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:FOFFset on page 553
```

Interferer 1 and 2 Power Level - Test Case 7.6

Enters the level of the interfering signals..

In edit mode "According to Standard" the value is fixed to a value determined by the selected "Interferer Bandwidth Type".

Remote command:

```
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:POWer on page 552
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:POWer on page 553
```

Interferer 2 Modulation - Test Case 7.6

Selects the type of modulation for the interfering modulation signal in the second path. In edit mode "According to Standard" the value is fixed to a value determined by the selected "Interferer Bandwidth".

"W-CDMA (3GPP FDD)"

A 3GPP FDD uplink signal with the following characteristic is generated for path B.

- DPCCH + DPDCH mode
- DPDCH with 240 ksps, 0 dB relative power, PRBS23 data source
- DPCCH with -5.46 dB relative power and slot format 2
- Same scrambling code as the wanted signal ("3GPP FDD" dialog)

"GMSK (270833 kHz)"

A GMSK signal (270.833 kHz bandwidth, PRBS9 data source) is generated for path B ("Custom Dig Mod" dialog).

"QPSK (3.84 MHz, Root Cosine 0.22)"

A QPSK signal (3.84 MHz bandwidth, root cosine filter 0.22, PRBS9 data source) is generated for path B ("Custom Dig Mod" dialog).

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:TYPE on page 554

7.2.2.6 Test Case 7.8 - Verification of Internal BER

The test case requires the basic configuration and is performed using the standard test setup for one path.

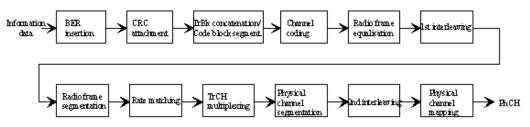
The signal generator outputs a corrupted reference measurement channel signal (= wanted signal) at output RF A. The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T.

The following table lists the settings on the base station:

Parameter	Value
Frequency	B, M and T
RMC	12.2 kbps
Scrambling code	Any


Test Purpose and Test Settings - Test Case 7.8

The test case verifies that a BS receiver has the capability to calculate the BER of a signal where erroneous bits are inserted in the data stream by the signal generator.

The test is passed when the calculated BER is within ±10% of the BER simulated by the signal generator the test frequencies B, M and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

Base Station System with internal BER calculation can synchronize it's receiver to known pseudo-random data sequence and calculates bit error ratio from the received data. This test is performed only if Base Station System has this kind of feature. This test is performed by feeding measurement signal with known BER to the input of the receiver. Locations of the erroneous bits shall be randomly distributed within a frame. Erroneous bits shall be inserted to the data bit stream as shown in the following figure.

3GPP FDD: Test Case Wizard (TS 25.141)					_	X
General Base Station OWanted Sig	1.948 gnal	1.949	1.95 Frequency / GHz	1.951	1.952	
Test Case 7.8 Verification of Internal B	ER					
Edit Mode		Accordi	ng to Standard -	Marker Configu	uration Auto	•
Trigger Configuration		Auto (Ex	kt. Trigger 1)			
Baseband A Signal Routing		To Path	and RF Port A			
7.8 Verification of Internal BER						oly

General Base Station Wanted Signal	
Scrambling Code (hex)	0000 00
Scrambling Mode	Long Scrambling Code
Power Class	Wide Area BS

General Base	Station Wanted Signal		
State	Off On	Reference Measurement Channel	RMC 12.2 kbps
RF Frequency	1.950 000 000 00 GHz	Power Level	-110.3 dBm -
Bit Error Rate	0.00		

Besides the settings described for all receiver test, Bit Error Rate and Block Error Rate selection is possible in edit mode "User Definable". In edit mode "According to Standard" only the Bit Error Rate setting is possible.

Bit Error Rate - Test Case 7.8

Sets the bit error rate. In edit mode "According to Standard" only values 0.00 (no bit errors are inserted) and 0.01 (1 percent bit errors are inserted) are available.

Remote command:
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BIT:RATE
on page 563

Block Error Rate - Test Case 7.8 Sets the block error rate in edit mode "User Definable".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BLOCk:RATE on page 563

7.2.3 Performance Requirements

7.2.3.1 Test Case 8.2.1 - Demodulation of DCH in Static Propagation Conditions

For **non-diversity measurements**, the test case requires Additional White Gaussian Noise (AWGN) (K62) in addition to the basic configuration.

The measurement is performed using the standard test setup for one path.

The signal generator outputs a reference measurement channel signal (= wanted signal) that is superimposed by a AWGN signal at output RF A. The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B10
- option R&S SMW-B13T
- option R&S SMW-K62
- option R&S SMW-K42

It is performed using the standard test setup for diversity measurement.

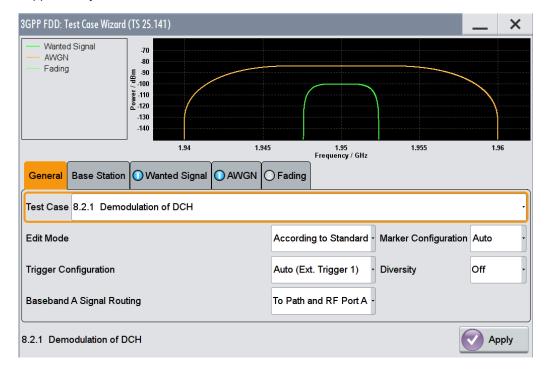
The signal generator outputs the reference measurement channel signal (= wanted signal) at output RF A and output RF B. The wanted signal is superimposed by a AWGN signal. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first BS frame trigger sent to input Trigger 1.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

Parameter	Value(s)
Frequency	B, M and T
RMC	12.2 kbps, 64 kbps, 144 kbps, 384 kbps
Scrambling code	Any

Table 7-4: The following table lists the settings on the base station:


Test Purpose and Test Settings - Test Case 8.2.1

The test case shall verify that a BS receiver has the capability to demodulate a signal that is sent by the signal generator and is superimposed by a heavy AWGN signal.

The test is passed when the resulting BLER (calculated internally by the BS) does not exceed the required BLER settings. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

The performance requirement of DCH in static propagation conditions is determined by the maximum Block Error Ratio (BLER) allowed when the receiver input signal is at a specified E_b/N_0 limit. The BLER is calculated for each of the measurement channels supported by the base station.

General Base Station Wanted Signa	AWGN Fading
Scrambling Code (hex)	0000 00
Scrambling Mode	Long Scrambling Code .
Power Class	Wide Area BS .
General Base Station Wanted Signa	AWGN O Fading
State Of	f On Reference Measurement Channel RMC 12.2 kbps -
RF Frequency 1.950 0	00 000 00 GHz - Power Level -100.3 dBm -
General Base Station O Wanted Signa	
State Of	f On Required BLER < 0.01
Power Level (within 3.84 MHz BW)	-84.00 dBm · Eb/N0 8.70 dB ·

General	Base Station	Wanted Signal	O AWGN	N Fading
State		Off	\bigcirc	On

Besides the settings described for all receiver test, AWGN Configuration is possible in edit mode "User Definable". In edit mode "According to Standard" only the Required BLER setting is possible. Fading is always off.

AWGN State - Test Case 8.x

Enables/disables the generation of the AWGN signal.

In edit mode "According to Standard" the state is fixed to "On".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:STATe on page 549

Required BLER - Test Case 8.x

Sets the required Block Error Rate in edit mode "According to Standard".

Remote command: [:SOURce]:BB:W3GPp:TS25141:AWGN:RBLock:RATE on page 548

Power Level - Test Case 8.x

Sets the AWGN level in edit mode "User Definable".

In edit mode "According to Standard" the AWGN level is determined by the selected "Power Class" .

- "-84 dBm" for "Wide Area BS"
- "-74 dBm" for "Medium Range BS"

"-70 dBm" for "Local Area BS"

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe on page 548

$E_{\rm b}$ to N_0 - Test Case 8.x

Sets the ratio of bit energy to noise power density.

In edit mode "According to Standard" the value depends on the E_b/N_0 test requirements (see Table 7-5).

Table 7-5: E_b/N₀ test requirements in AWGN channel

Measurement channel	Received E _b to N₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
12.2 kbps	n.a. (5.5 dB)	n.a. (8.7 dB)	< 10 ⁻¹
	5.5 dB	8.7 dB	< 10 ⁻²
64 kbps	1.9 dB	5.1 dB	< 10 ⁻¹
	2.1 dB	5.2 dB	< 10 ⁻²
144 kbps	1.2 dB	4.2 dB	< 10 ⁻¹
	1.3 dB	4.4 dB	< 10 ⁻²
384 kbps	1.3 dB	4.4 dB	< 10 ⁻¹
	1.4 dB	4.5 dB	< 10 ⁻²

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:ENRatio on page 547

Fading State - Test Case 8.2.1

Indicates the state of the Fader.

The state is fixed to 'Off'.

Remote command: [:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe on page 550

7.2.3.2 Test Case 8.3.1 - Demodulation of DCH in Multipath Fading Case 1 Conditions

For **non-diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-K62
- option R&S SMW-B14/K71

The measurement is performed using the standard test setup for one path.

The signal generator outputs a reference measurement channel signal (= wanted signal) that is disturbed by an AWGN signal and multipath fading effects at output RF A(B). The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

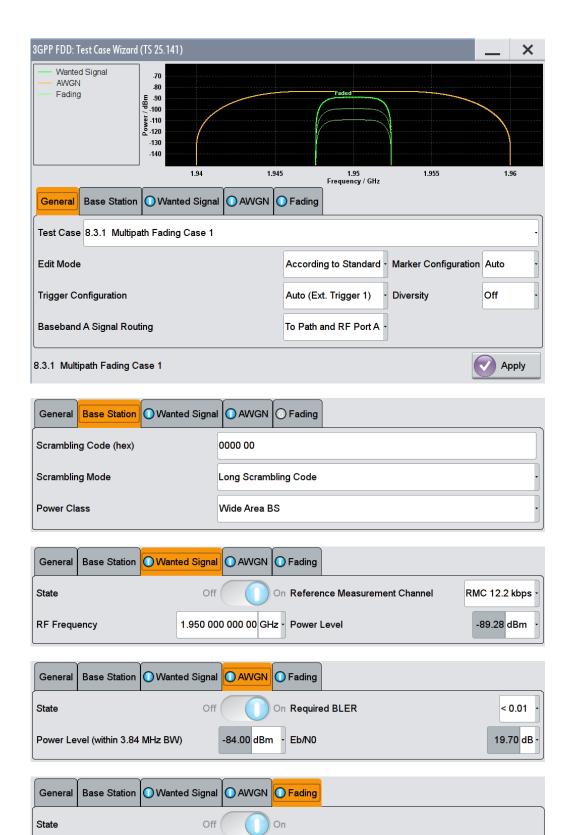
- option R&S SMW-B20x
- option R&S SMW-B13T
- option R&S SMW-K62
- option R&S SMW-B14/K71

It is performed using the standard test setup for diversity measurement.

The signal generator outputs the reference measurement channel signal (= wanted signal) that is disturbed by an AWGN signal and multipath fading effects at output RF A and output RF B. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.


The following table lists the settings on the base station:

Parameter	Value(s)
Frequency	B, M and T
RMC 12.2 kbps, 64 kbps, 144 kbps, 384 kbps	
Scrambling code	Any

Test Purpose and Test Settings - Test Case 8.3.1

The test case shall verify that a BS receiver has the capability to demodulate a signal that is sent by the signal generator but superimposed by a heavy AWGN signal and disturbed by multipath fading effects.

The test is passed when the resulting BLER (calculated internally by the BS) does not exceed the required BLER settings. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

This test case settings are identical to test case 8.2.1 except from the channel simulation that is set to "Multipath Fading Case 1" ("Fading > Standard > 3GPP Case 1 UE/BS" and the specific E_b/N_0 test requirements (see Table 7-6).

Table 7-6: E_b/N₀ Test requirements in multipath Case 1 channel

Measurement channel	Received E _b /N ₀ for BS with Rx diver- sity	Received E _b /N ₀ for BS without Rx diversity	Required BLER
12.2 kbps	n.a. (12.5 dB)	n.a. (19.7 dB)	< 10 ⁻¹
	12.5 dB	19.7 dB	< 10 ⁻²
64 kbps	6.8 dB	12.2 dB	< 10 ⁻¹
	9.8 dB	16.5 dB	< 10 ⁻²
144 kbps	6.0 dB	11.4 dB	< 10 ⁻¹
	9.0 dB	15.6 dB	< 10 ⁻²
384 kbps	6.4 dB	11.8 dB	< 10 ⁻¹
	9.4 dB	16.1 dB	< 10 ⁻²

Fading State - Test Case 8.x

Indicates the state of the Fader.

The state is fixed to "On". The "Fading" dialog is preset with the required settings for the test case.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe on page 550

7.2.3.3 Test Case 8.3.2 - Demodulation of DCH in Multipath Fading Case 2 Conditions

This test case is identical to test case 8.3.1 except from the channel simulation that is set to "Multipath Fading Case 2" ("Fading" dialog: Standard = 3GPP Case 2 UE/BS) and the E_b/N_0 test requirements (see Table 7-7).

Measurement channel	Received E_b to N_0 for BS with Rx diversity	Received E _b to N ₀ for BS with- out Rx diver- sity	Required BLER
12.2 kbps	n.a. (9.6 dB)	n.a. (15.6 dB)	< 10 ⁻¹
	9.6 dB	15.6 dB	< 10 ⁻²
64 kbps	4.9 dB	9.8 dB	< 10 ⁻¹
	7.0 dB	12.9 dB	< 10 ⁻²
144 kbps	4.3 dB	8.8 dB	< 10 ⁻¹
	6.2 dB	12.1 dB	< 10 ⁻²

Measurement channel	Received E _b to N₀ for BS with Rx diversity	Received E _b to N₀ for BS with- out Rx diver- sity	Required BLER
384 kbps	4.7 dB	9.3 dB	< 10 ⁻¹
	6.7 dB	12.7dB	< 10 ⁻²

7.2.3.4 Test Case 8.3.3 - Demodulation of DCH in Multipath Fading Case 3 Conditions

This test case is identical to test case 8.3.1 except from the channel simulation that is set to 'Multipath Fading Case 3' ("> 3GPP Case 3 UE/BS") and the E_b/N_0 test requirements (see Table 7-8).

Measurement channel	Received E _b to N ₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
12.2 kbps	n.a. (7.8 dB)	n.a. (11.4 dB)	< 10 ⁻¹
	7.8 dB	11.4 dB	< 10 ⁻²
	8.6 dB	12.3 dB	< 10 ⁻³
64 kbps	4.0 dB	7.7 dB	< 10 ⁻¹
	4.4 dB	8.3 dB	< 10 ⁻²
	4.7 dB	9.1 dB	< 10 ⁻³
144 kbps	3.4 dB	6.6 dB	< 10 ⁻¹
	3.8 dB	7.3 dB	< 10 ⁻²
	4.2 dB	7.8 dB	< 10 ⁻³
384 kbps	3.8 dB	7.1 dB	< 10 ⁻¹
	4.2 dB	7.8 dB	< 10 ⁻²
	4.8 dB	8.5 dB	< 10 ⁻³

Table 7-8: E_b/N₀ Test requirements in multipath Case 3 channel

7.2.3.5 Test Case 8.3.4 - Demodulation of DCH in Multipath Fading Case 4 Conditions

This test case is identical to test case 8.3.1 except from the channel simulation that is set to "Multipath Fading Case 4" ("Fading > Standard > 3GPP Case 4 UE") and the E_b/N_0 test requirements (see following table).

Measurement channel	Received E_b to N_0 for BS with Rx diversity	Received E _b to N₀ for BS without Rx diversity	Required BLER
12.2 kbps	n.a. (10.8 dB)	n.a. (14.4 dB)	< 10 ⁻¹
	10.8 dB	14.4 dB	< 10 ⁻²

Table 7-9: E_b/N₀ Test requirements in multipath Case 4 channel

Measurement channel	Received E _b to N₀ for BS with Rx diversity	Received E_b to N_0 for BS without Rx diversity	Required BLER
	11.6 dB	15.3 dB	< 10 ⁻³
64 kbps	7.0 dB	10.7 dB	< 10 ⁻¹
	7.4 dB	11.3 dB	< 10 ⁻²
	7.7 dB	12.1 dB	< 10 ⁻³
144 kbps	6.4 dB	9.6 dB	< 10 ⁻¹
	6.8 dB	10.3 dB	< 10 ⁻²
	7.2 dB	10.8 dB	< 10 ⁻³
384 kbps	6.8 dB	10.1 dB	< 10 ⁻¹
	7.2 dB	10.8 dB	< 10 ⁻²
	7.8 dB	11.5 dB	< 10 ⁻³

Table 7-10: E_b/N_0 Test requirements in multipath Case 4 channel

Measurement channel	Received E _b to N ₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
12.2 kbps	n.a. (10.8 dB)	n.a. (14.4 dB)	< 10 ⁻¹
	10.8 dB	14.4 dB	< 10 ⁻²
	11.6 dB	15.3 dB	< 10 ⁻³
64 kbps	7.0 dB	10.7 dB	< 10 ⁻¹
	7.4 dB	11.3 dB	< 10 ⁻²
	7.7 dB	12.1 dB	< 10 ⁻³
144 kbps	6.4 dB	9.6 dB	< 10 ⁻¹
	6.8 dB	10.3 dB	< 10 ⁻²
	7.2 dB	10.8 dB	< 10 ⁻³
384 kbps	6.8 dB	10.1 dB	< 10 ⁻¹
	7.2 dB	10.8 dB	< 10 ⁻²
	7.8 dB	11.5 dB	< 10 ⁻³

Table 7-11: E_b/N_0 Test requirements in multipath Case 4 channel

Measurement channel	Received E _b to N₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
12.2 kbps	n.a. (10.8 dB)	n.a. (14.4 dB)	< 10 ⁻¹
	10.8 dB	14.4 dB	< 10 ⁻²
	11.6 dB	15.3 dB	< 10 ⁻³

Measurement channel	Received E _b to N₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
64 kbps	7.0 dB	10.7 dB	< 10 ⁻¹
	7.4 dB	11.3 dB	< 10 ⁻²
	7.7 dB	12.1 dB	< 10 ⁻³
144 kbps	6.4 dB	9.6 dB	< 10 ⁻¹
	6.8 dB	10.3 dB	< 10 ⁻²
	7.2 dB	10.8 dB	< 10 ⁻³
384 kbps	6.8 dB	10.1 dB	
	7.2 dB	10.8 dB	< 10 ⁻²
	7.8 dB	11.5 dB	< 10 ⁻³

7.2.3.6 Test Case 8.4 - Demodulation of DCH in Moving Propagation Conditions

This test case is identical to test case 8.3.1 except from the channel simulation that is set to "Moving Propagation" ("Fading > Standard > Moving Propagation") and the E_b/N_0 test requirements.

Measurement channel	Received E _b to N ₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
12.2 kbps	n.a. (6.3 dB)	n.a. (9.3 dB)	< 10 ⁻¹
	6.3 dB	9.3 dB	< 10 ⁻²
64 kbps	2.7 dB	5.9 dB	< 10 ⁻¹
	2.8 dB	6.1 dB	< 10 ⁻²

Table 7-12: *E_b/N*₀ Test requirements in moving channel

7.2.3.7 Test Case 8.5 - Demodulation of DCH in Birth/Death Propagation Conditions

This test case is identical to test case 8.3.1 except from the channel simulation that is set to B"irth/Death Propagation" ("Fading > Standard > Birth/Death Propagation") and the E_b/N_0 test requirements.

Measurement channel	Received E _b to N ₀ for BS with Rx diversity	Received E _b to N ₀ for BS without Rx diver- sity	Required BLER
12.2 kbps	n.a. (8.3 dB)	n.a. (11.4 dB)	< 10 ⁻¹
	8.3 dB	11.4 dB	< 10 ⁻²

Measurement channel	Received E _b to N₀ for BS with Rx diversity	Received E _b to N₀ for BS without Rx diver- sity	Required BLER
64 kbps	4.7 dB	8.0 dB	< 10 ⁻¹
	4.8 dB	8.1 dB	< 10 ⁻²

7.2.3.8 Test Case 8.6 - Verification of Internal BLER

For **non-diversity measurements**, the test case requires the basic configuration and is performed using the standard test setup for one path.

The signal generator outputs a corrupted reference measurement channel signal (= wanted signal) at output RF A. The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

For **diversity measurements**, the test case requires option Second RF path (B20x) and a second option Baseband Main Module (B13) in addition to the basic configuration.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B13T

It is performed using the standard test setup for diversity measurement.

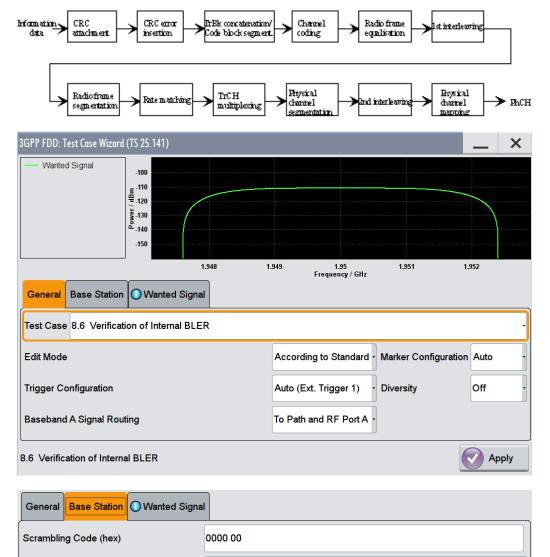
The signal generator outputs the corrupted reference measurement channel signal (= wanted signal) at output RF A and output RF B. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

The following table lists the settings on the base station

Parameter	Value
Frequency	B, M and T
RMC	12.2 kbps, 64 kbps, 144 kbps, 384 kbps
Scrambling code	Any


Test Purpose and Test Settings - Test Case 8.6

The test case verifies that a BS receiver has the capability to calculate the BLER of a signal where erroneous blocks are inserted in the data stream by the signal generator.

The test is passed when the calculated BLER is within ±10% of the BLER simulated by the signal generator the test frequencies B, M and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

Base Station System with internal BLER calculates block error rate from the CRC blocks of the received. This test is performed only if Base Station System has this kind of feature. All data rates which are used in clause 8 Performance requirement testing shall be used in verification testing. This test is performed by feeding measurement signal with known BLER to the input of the receiver. Locations of the erroneous blocks shall be randomly distributed within a frame. Erroneous blocks shall be inserted into the UL signal as shown in the following figure.

Long Scrambling Code

Wide Area BS

Scrambling Mode

Power Class

General Base S	Station Wanted Signal		
State	Off On	Reference Measurement Channel	RMC 12.2 kbps
RF Frequency	1.950 000 000 00 GHz	- Power Level	-111.0 dBm •
Block Error Rate	0.00 -		

Besides the settings described for all receiver test, Bit Error Rate and Block Error Rate selection is possible in edit mode "User Definable". In edit mode "According to Standard" only the Block Error Rate setting is possible.

Table 7-13: UL signal levels for different data rates

Data rate	Signal level for Wide Area BS	Signal level for Medium Range BS	Signal level for Local Area BS	Unit
12,2 kbps	-111	-101	-97	dBm/3.84 MHz
64 kbps	-107	-97	-93	dBm/3.84 MHz
144 kbps	-104	-94	-90	dBm/3.84 MHz
384 kbps	-100	-90	-86	dBm/3.84 MHz

Block Error Rate - Test Case 8.6

Sets the block error rate. In edit mode "According to Standard" only values 0.00 (no block errors are inserted) and 0.01 (1 percent block errors are inserted) are available.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BLOCk:RATE on page 563

Bit Error Rate - Test Case 8.6

Sets the bit error rate in edit mode "User Definable".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BIT:RATE on page 563

7.2.3.9 Test Case 8.8.1 - RACH Preamble Detection in Static Propagation Conditions

For **non-diversity measurements**, the test case requires option K62 - Additional White Gaussian Noise (AWGN) in addition to the basic configuration.

The measurement is performed using the standard test setup for one path.

The signal generator outputs a continuous sequence of preambles (wanted signal) that is superimposed by a AWGN signal at output RF A(B). The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first BS frame trigger sent to input "Trigger 1".

The measurement must be made at the three frequencies B, M and T.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B13T
- 2xoption R&S SMW-K62

It is performed using the standard test setup for diversity measurement.

The signal generator outputs a continuous sequence of preambles (wanted signal) that is superimposed by a AWGN signal at output RF A and output RF B. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T.

The following table lists the settings on the base station:

Parameter	Value(s)
Frequency	B, M and T
RMC	RACH
Scrambling code	Any

Test Purpose and Test Settings - Test Case 8.8.1

The test case verifies that a BS receiver has the capability to detect the RACH preamble that is sent by the signal generator and is superimposed by a heavy AWGN signal.

The test is passed when internally calculated Pd is equal or above the required Pd settings at the test frequencies B, M and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

The performance requirement of RACH for preamble detection in static propagation conditions is determined by the two parameters probability of false detection of the preaE_c/N₀mble (Pfa) and the probability of detection of preamble (Pd). The performance is measured by the required at probability of detection, Pd of 0.99 and 0.999. Pfa is defined as a conditional probability of erroneous detection of the preamble when input is only noise (+interference). Pd is defined as conditional probability of detection of the preamble when the signal is present. Pfa shall be 10-3 or less. Only one signature is used and it is known by the receiver.

The Probability of false detection of the preamble (Pfa) test is not supported.

General Base Station O Wanted Signal	AWGN Fading
Scrambling Code (hex)	0000 00
Scrambling Mode	Long Scrambling Code
Power Class	Wide Area BS .

General	ase Station	Wanted Signal	O AWGN	○ Fading		
State		Off(Dn		
RF Frequence	су	1.950 000	000 00 GH	- Power	_evel	-101.2 dBm •

General	Base Station	Wanted Signal	AWGN Fading	
State		Off	On Required	Pd >=0.99 ·
Power Le	vel (within 3.84	MHz BVV) -8	4.00 dBm - Ec/N0	-17.20 dB -
General	Base Station	Wanted Signal	AWGN Fading	
State		Off	On	

Besides the settings described for all receiver test, AWGN and Fading Configuration is possible in edit mode "User Definable". In edit mode "According to Standard "only the "Required Pd" setting is possible.

AWGN State - Test Case 8.x

Enables/disables the generation of the AWGN signal.

In edit mode "According to Standard" the state is fixed to "On".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:STATe on page 549

Required Pd - Test Case 8.x

Sets the Required Probability of Detection of Preamble (Required Pd) in edit mode "According to Standard":

- >= 0.99
- >= 0.999

This figure determines the ratio E_c/N_0 according to the following table of E_c/N_0 test requirements.

	$\rm E_c/N_0$ for required Pd (0.99	$\rm E_c/N_0$ for required Pd (0.999
"BS with Rx Diversity"	-20.1 dB	-19.7 dB
"BS without Rx Diversity"	-17.2 dB	-16.4 dB

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:RPDetection:RATE on page 548

Power Level - Test Case 8.x

Sets the AWGN level in edit mode "User Definable".

In edit mode "According to Standard" the AWGN level is determined by the selected "Power Class" .

- "-84 dBm" for "Wide Area BS"
- "-74 dBm" for "Medium Range BS"
- "-70 dBm" for "Local Area BS"

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe on page 548

E_b/N₀ - Test Case 8.x

Sets the ratio of bit energy to noise power density.

In edit mode "According to Standard" the value depends on the selected "Required Pd".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:ENRatio on page 547

Fading State - Test Case 8.x.1

Indicates the state of the Fader.

The state is fixed to "Off".

Remote command:

[:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe on page 550

7.2.3.10 Test Case 8.8.2 - RACH Preamble Detection in Multipath Fading Case 3

For **non-diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-K62
- option R&S SMW-B14/K71

The measurement is performed using the standard test setup for one path.

The signal generator outputs a continuous sequence of preambles (= wanted signal) that is disturbed by an AWGN signal and multipath fading effects at output RF A(B). The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first BS frame trigger sent to input "Trigger 1".

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B13T
- option R&S SMW-K62
- option R&S SMW-B14/K71

It is performed using the standard test setup for diversity measurement.

The signal generator outputs a continuous sequence of preambles (= wanted signal) that is disturbed by an AWGN signal and multipath fading effects at output RF A and output RF B. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The RMC data rates are 12.2 kbps, 64 kbps, 144 kbps and 384 kbps.

The following table lists the settings on the base station:

Parameter	Value(s)
Frequency	B, M and T
RMC	12.2 kbps, 64 kbps, 144 kbps, 384 kbps
Scrambling code	Any

Test Purpose and Test Settings - Test Case 8.8.2

The test case shall verify that a BS receiver has the capability to detect the RACH preamble that is sent by the signal generator and is superimposed by a heavy AWGN signal and disturbed by multipath fading effects. The test is passed when internally calculated Pd is equal or above the required Pd settings at the test frequencies B, M and T. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

General	Base Station	Wanted Signal		Fading	
State		Off		On	
8.8.2 RAC	2 RACH Preamble Detection in Multipath Fading Case 3				

This test case is identical to test case 8.8.1 except from the channel simulation that is set to "Multipath Fading Case 3" ("Fading > Standard = 3GPP Case 3 UE/BS") by default and the specific E_C/N_0 ratio requirements (see following table).

	$\rm E_c/N_0$ for required Pd (0.99	$E_{\rm c}/N_0$ for required Pd (0.999
"BS with Rx Diversity"	-14.9 dB	-12.8 dB
"BS without Rx Diversity"	-8.8 dB	-5.8 dB

Fading State - Test Case 8.x

Indicates the state of the Fader.

The state is fixed to "On". The "Fading" dialog is preset with the required settings for the test case.

Remote command: [:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe on page 550

7.2.3.11 Test Case 8.8.3 - RACH Demodulation of Message Part in Static Propagation Conditions

For **non-diversity** measurements, the test case requires option K62 - Additional White Gaussian Noise (AWGN) in addition to the basic configuration.

The measurement is performed using the standard test setup for one path.

The signal generator outputs a RACH message signal (= wanted signal) that is superimposed by a AWGN signal at output RF A(B). The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first BS frame trigger sent to input "Trigger 1".

The measurement must be made at the three frequencies B, M and T. The Transport Block Sizes are 168 bits and 360 bits.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B13T
- 2x option R&S SMW-K62

It is performed using the standard test setup for diversity measurement.

The signal generator outputs the RACH message signal (= wanted signal) that is superimposed by a AWGN signal at output RF A and output RF B. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The Transport Block Sizes are 168 bits and 360 bits.

The following table lists the settings on the base station:

Parameter	Value(s)
Frequency	B, M and T
Transport Block Size	168 bits, 360 bits
RMC	RACH
Scrambling code	Any

Test Purpose and Test Settings - Test Case 8.8.3

The test case shall verify that a BS receiver has the capability to demodulate the RACH message sent by the signal generator but superimposed by AWGN.

The test is passed when the resulting BLER (calculated internally by the BS) does not exceed the required BLER settings. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

Quotation from TS 25.141:

The performance requirement of RACH in static propagation conditions is determined by the maximum Block Error Ratio (BLER) allowed when the receiver input signal is at a specified E_b/N_0 limit. The BLER is calculated for each of the measurement channels supported by the base station.

The preamble threshold factor is chosen to fulfil the requirements on Pfa and Pd in subclauses 8.8.1 and 8.8.2. Only one signature is used and it is known by the receiver.

General Base Station 🔾 Wanted Signa	I AWGN S Fading
Scrambling Code (hex)	0000 00
Scrambling Mode	Long Scrambling Code
Power Class	Wide Area BS

General	Base Station	Wanted Signal	O AWGN	◯ Fading		
State		Off		On Transp	ort Block Size	168 bits -
RF Frequ	ency	1.950 000	000 00 GH	z - Power	_evel	-103.0 dBm •

General Base	Station Wanted Signal AWGN Fading	
State	Off On Required BLER	<0.1 •
Power Level (wi	thin 3.84 MHz BW) -84.00 dBm - Eb/N0	7.60 dB •
General Base	Station Wanted Signal AWGN Fading	
State	Off On	

Besides the settings described for all receiver test, selection of "Transport Block Size" of the wanted signal and AWGN Configuration is possible in edit mode "According to Standard".

Transport Block Size - Test Case 8.8.x

Sets the Transport Block Size:

- 168 bits
- 360 bits

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PRACh:CCODing:TYPE on page 565

AWGN State - Test Case 8.8.3

Enables/disables the generation of the AWGN signal.

In edit mode "According to Standard" the state is fixed to "On".

Remote command: [:SOURce]:BB:W3GPp:TS25141:AWGN:STATe on page 549

Required BLER - Test Case 8.x

Sets the required Block Error Rate in edit mode "According to Standard".

- < 0.1
- < 0.01

This figure determines the ratio E_b/N_0 according to the list of E_b/N_0 test requirements (see following table).

E_b/N₀ requirements in AWGN channel

Table 7-15: Transport Block size TB and TTI in frames: 168 bits, TTI = 20 ms / 360 bits, TTI = 20 ms

	E _b /N ₀ for required BLER < 10 ⁻¹	E _b /N ₀ for required BLER < 10 ⁻²	E _b /N ₀ for required BLER < 10 ⁻¹	E_b/N_0 for required BLER < 10 ⁻²
"BS with Rx Diver- sity"	4.5 dB	5.4 dB	4.3 dB	5.2 dB
"BS without Rx Diversity"	7.6 dB	8.5 dB	7.3 dB	8.2 dB

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:RBLock:RATE on page 548

Power Level - Test Case 8.8.3

Sets the AWGN level in edit mode "User Definable".

In edit mode "According to Standard" the AWGN level is determined by the selected "Power Class" .

"-84 dBm" for "Wide Area BS"

"-74 dBm" for "Medium Range BS"

"-70 dBm" for "Local Area BS"

Remote command:

[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe on page 548

E_b/N₀- Test Case 8.8.3

Sets the ratio of bit energy to noise power density.

In edit mode "According to Standard" the value depends on the selected "Required BLER".

Remote command: [:SOURce]:BB:W3GPp:TS25141:AWGN:ENRatio on page 547

Fading State - Test Case 8.8.3

Indicates the state of the Fader.

The state is fixed to "Off".

Remote command: [:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe on page 550

7.2.3.12 Test Case 8.8.4 - RACH Demodulation of Message Part in Multipath Fading Case 3

For **non-diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-K62
- option R&S SMW-B14/K71

The measurement is performed using the standard test setup for one path.

The signal generator outputs a RACH message signal (= wanted signal) that is disturbed by an AWGN signal and multipath fading effects at output RF A. The signal is fed into the base station Rx port.

The signal generator will start signal generation at the first BS frame trigger sent to input "Trigger 1".

The measurement must be made at the three frequencies B, M and T. The Transport Block Sizes are 168 bits and 360 bits.

For **diversity measurements**, in addition to the standard configuration, this test case requires:

- option R&S SMW-B20x
- option R&S SMW-B13T
- option R&S SMW-K62
- option R&S SMW-B14/K71

It is performed using the standard test setup for diversity measurement.

The signal generator outputs a RACH message signal (= wanted signal) that is disturbed by an AWGN signal and multipath fading effects at output RF A and output RF B. The signals are fed into the base station Rx ports.

The signal generator will start signal generation at the first received BS frame trigger.

The measurement must be made at the three frequencies B, M and T. The Transport Block Sizes are 168 bits and 360 bits.

Test Purpose and Test Settings - Test Case 8.8.4

The test case shall verify that a BS receiver has the capability to demodulate the RACH message sent by the signal generator but superimposed by AWGN and disturbed by multipath fading effects.

The test is passed when the resulting BLER (calculated internally by the BS) does not exceed the required BLER settings. Note TS 25.141 Annex C: General Rules for Statistical Testing, where test conditions in terms of test methods and test conditions are defined.

3GPP FDD: Test Case Wizard (TS 25.141)				_	×
Wanted Signal AWGN Fading	1.945	5 1.95 Frequency / GHz	1.955	1.9	6
General Base Station O Wanted Signa		Fading			
Test Case 8.8.4 Demodulation of RACH	Message in Mult	tipath Fading Case 3			-
Edit Mode		According to Standard	Marker Configurat	ion Auto	•
Trigger Configuration		Auto (Ext. Trigger 1)	Diversity	Off	•
Baseband A Signal Routing		To Path and RF Port A			
8.8.4 Demodulation of RACH Message in I	Multipath Fading	g Case 3		Ap	ply
General Base Station O Wanted Signa		Fading			
Scrambling Code (hex)	0000 00				
Scrambling Mode	Long Scrambli	ng Code			•
Power Class	Wide Area BS				•
General Base Station Wanted Signa		Fading			
State Off	0	n Reference Measureme	ent Channel	RMC 12.2 I	۰ bps
RF Frequency 1.950 00	00 000 00 GHz	Power Level		-99.68 d	Bm -

General	Base Station O Wanted Signal O AWGN O Fading
State	Off On Required BLER < 0.01 -
Power Lev	vel (within 3.84 MHz BW) -84.00 dBm - Eb/N0 9.30 dB -
General	Base Station Wanted Signal AWGN Fading
State	

This test case is identical to test case 8.8.3 except from the channel simulation that is set to "Multipath Fading Case 3" ("Fading > Standard > 3GPP Case 3 UE/BS") and the specific E_b/N_0 ratio requirements.

E_b/N₀ test requirements in fading case 3 channel

Transport Block size TB and TTI in frames: 168 bits, TTI = 20 ms / 360 bits, TTI = 20 ms

	E _b /N₀ for required BLER < 10 ⁻¹	E _b /N₀ for required BLER < 10 ⁻²	E _b /N₀ for required BLER < 10 ⁻¹	E_b/N_0 for required BLER < 10 ⁻²
"BS with Rx Diver- sity"	8.0 dB	9.1 dB	7.9 dB	8.9 dB
"BS without Rx Diversity"	11.7 dB	13.0 dB	11.6 dB	12.7 dB

7.2.3.13 Test Case 8.9.1 - CPCH Access Preamble and Collision Detection Preamble Detection in Static Propagation Conditions

This test case is identical to test case 8.8.1 except that the CPCH Preamble is used instead of the RACH preamble.

7.2.3.14 Test Case 8.9.2 - CPCH Access Preamble and Collision Detection Preamble Detection in Multipath Fading Case 3

This test case is identical to test case 8.8.2 except that the CPCH Preamble is used instead of the RACH preamble.

7.2.3.15 Test Case 8.9.3 - Demodulation of CPCH Message in Static Propagation Conditions

This test case is identical to test case 8.8.3 except from differing Eb/N0 ratio requirements and the demodulation of CPCH Message instead of the RACH Message.

Test requirements in AWGN channel

Transport Block size TB and TTI in frames: 168 bits, TTI = 20 ms / 360 bits, TTI = 20 ms

	E _b /N₀ for required BLER < 10 ⁻¹	E _b /N₀ for required BLER < 10 ⁻²	E _b /N₀ for required BLER < 10 ⁻¹	E _b /N₀ for required BLER < 10 ⁻²
"BS with Rx Diver- sity"	4.5 dB	5.4 dB	4.3 dB	5.2 dB
"BS without Rx Diversity"	7.5 dB	8.4 dB	7.3 dB	8.2 dB

Transport Block Size (TB) - Test Case 8.9.3

Sets the Transport Block Size:

168 bits

360 bits

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PCPCh:CCODing:TYPE on page 564

7.2.3.16 Test Case 8.9.4 - Demodulation of CPCH Message in Multipath Fading Case 3

This test case is identical to test case 8.8.4 except from differing Eb/N0 ratio requirements and the demodulation of the CPCH Message instead of the RACH Message.

Test requirements in fading case 3 channel

Transport Block size TB and TTI in frames: 168 bits, TTI = 20 ms / 360 bits, TTI = 20 ms

	E _b /N₀ for required BLER < 10 ⁻¹	E _b /N ₀ for required BLER < 10 ⁻²	E _b /N ₀ for required BLER < 10 ⁻¹	E_b/N_0 for required BLER < 10 ⁻²
"BS with Rx Diver- sity"	8.1 dB	9.1 dB	7.9 dB	8.7 dB
"BS without Rx Diversity"	11.4 dB	12.6 dB	11.3 dB	12.3 dB

7.3 Transmitter Tests

7.3.1 Basic Configuration

The test cases for transmitter tests require at least the following equipment layout for the signal generator:

Digital Standard 3GPP FDD (R&S SMW-K42)

- Arbitrary Waveform Generator (R&S SMW-B10),
- Baseband Main module (R&S SMW-B13),
- Frequency option (R&S SMWB10x).

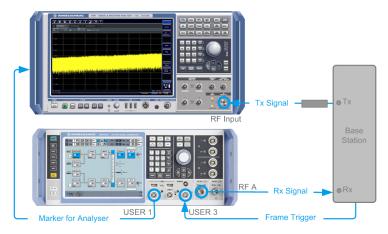
Transmitter tests always require a separate measuring equipment to perform the tests, e.g. the Vector Signal Analyzer R&S FSQ.

Test cases where the signal generator hardware equipment is not sufficient are shown in grey color but are not selectable. RF power and frequency limitations of the hardware equipment restrict the setting ranges.

7.3.2 Test Case 6.4.2 - Power Control Steps

The test case requires the basic configuration.

It can be performed using the standard test setup according to TS 25.141. A vector signal analyzer is required, e.g. the Vector Signal Analyzer R&S FSQ.


For the signal generator, in case of two-path instruments signal routing to path A is assumed.

Output RF A of the signal generator is connected to the Rx port of the base station. The Tx signal of the base station is connected to the RF input of the analyzer via an attenuator.

The signal generator will start signal generation at the first received BS frame trigger. The analyzer is triggered by a marker signal ("Marker 1") of the generator.

The signal generator provides an uplink link signal with a precisely defined TPC bit sequence. The base station responds to the TPC bits by controlling the transmitted power of the data channel which is checked by the analyzer.

The analyzer measures the base station transmit power in the code domain to verify the transmitter power control step tolerance and aggregated power control step range.


7.3.2.1 Test Purpose and Test Settings - Test Case 6.4.2

The test case verifies that a BS receiver has the capability to adjust its transmit power in response to the uplink TPC pattern. The cumulative power change as a result of ten successive (identical) TPC bits is also checked (aggregated transmit power).

The test is passed when the single or aggregated power control steps are within tolerance throughout the total dynamic range at the test frequencies B, M, and T.

Quotation from TS 25.141

The power control step is the required step change in the code domain power of a code channel in response to the corresponding power control command. The combined output power change is the required total change in the DL transmitter output power of a code channel in response to multiple consecutive power control commands corresponding to that code channel.

General Base Station	Wanted Signal		
State	Off On		
RF Frequency	1.950 000 000 00 GHz -	Power Level	-110.3 dBm -
General Base Station	Wanted Signal		
Slot Format DPCCH #	0	Overall Symbol Rate DPDCH 60 ks	os ·
Pow Ratio DPC/DPDCH	0.00 dB -	Propagation Delay	0.00 Chips -
TPC Start Pattern	Max. Pow. Less N Steps -	Power Up Steps 1 Powe	r Dn Steps 1
TPC Repeat Pattern	Single Power Steps		

Wanted Signal State - Test Case 6.4.2

Enables/disables the signal generation of the wanted 3GPP signal.

In edit mode "According to Standard" the state is fixed to On.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:STATe on page 565

Wanted Signal Frequency - Test Case 6.4.2

Sets the RF frequency of the wanted signal.

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:FREQuency on page 564

Wanted Signal Level - Test Case 6.4.2

Sets the RF level in edit mode "User Definable".

In edit mode "According to Standard" the RF level is determined by the selected "Power Class".

It is always 10 dBm above the reference sensitivity:

- "-120.3 dB + 10 dBm" when "Wide Area BS"
- "-110.3 dB + 10 dBm" when "Medium Range BS"
- "-106.3 dB + 10 dBm" when "Local Area BS"

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:POWer on page 565

Slot Format DPCCH - Test Case 6.4.2

Selects the slot format.

Slot formats 0 to 5 are available for the DPCCH channel. The slot format defines the FBI mode and the TFCI status.

"Slot format 0" no FBI field / TFCI on "Slot format 1" no FBI field / TFCI off

"Slot format 2" 1 FBI field / TFCI on

"Slot format 3"	1 FBI field / TFCI off
"Slot format 4"	2 FBI field / TFCI off
"Slot format 5"	2 FBI field / TFCI on

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:SFORmat on page 559

Overall Symbol Rate - Test Case 6.4.2

Sets the overall symbol rate of all the DPDCH channels.

The structure of the DPDCH channel table depends on this parameter. The overall symbol rate determines which DPDCHs are active, which symbol rate they have and which channelization codes they use.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:ORATe on page 563

Power Ratio DPCCH to DPDCH - Test Case 6.4.2

Sets the channel power ratio of DPCCH to DPDCH.

Remote command: [:SOURce]:BB:W3GPp:TS25141:WSIGnal:DCRatio on page 559

Propagation Delay - Test Case 6.4.2

Sets an additional propagation delay besides the fixed DL-UL timing offset of 1024 chip periods.

Note: The additional propagation delay is achieved by charging the start trigger impulse with the respective delay (= entering the value as an "External Delay" in the 3GPP "Trigger /Marker" dialog).

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:TRIGger[:EXTernal]:DELay on page 566

TPC Start Pattern - Test Case 6.4.2

Sets the TPC pattern for initialization of the base stations power level in edit mode "User Definable". The TPC start pattern is sent before the TPC repeat pattern.

In edit mode "According to Standard" the pattern is fixed to "Maximum Power Less n Steps".

Note: In edit mode "According to Standard", the TPC bits are read out of predefined data lists.

The TPC start pattern ensures that the base station responds reliably to the TPC bits from the generator. It sets the base station to a defined initial state for the actual recording of the measurement data. The analyzer is only triggered after the generation of the start pattern using marker 1 of the generator.

"Maximum Power Less n Steps"

A sequence of power up steps (TPC bits "1") is followed by a number of power down steps (TPC bits "0").

A sufficiently long sequence of TPC bits "1" ('power up' commands) forces the base station to maximum transmit power. By the n 'power down' commands the base station is set to a defined number of n power steps (e.g. 1 dB or 0.5 dB) below its maximum transmit power at the beginning of the measurement.

"Data List" The TPC start pattern is taken from a user defined data list. When "Data List" is selected, a button appears for calling the "File Select" window.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa on page 561
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:DSELect
on page 562

TPC Power Up Steps - Test Case 6.4.2

If "TPC Start Pattern > Max. Pow. Less N Steps", sets the number of power up bits ("1") in the TPC start pattern. The total TPC start pattern length is the number of 'power up' bits plus the number of n 'power down' bits.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PUSTeps on page 562

TPC Power Down Steps - Test Case 6.4.2

If "TPC Start Pattern > Max. Pow. Less N Steps", sets the number of power down bits ('0') in the TPC start pattern. The total TPC start pattern length is the number of 'power up' ('1') bits plus the number of n 'power down' ('0') bits.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PDSTeps on page 562

TPC Repeat Pattern - Test Case 6.4.2

Sets the TPC pattern for verification of the base stations power control steps.

In edit mode "According to Standard" the selection is limited.

"Single Power Steps"

A 01 pattern is sent periodically for measurement of the transmitter power control step tolerance.

"Aggregated Power Steps"

A 0000000001111111111 pattern is sent periodically for measurement of the transmitter aggregated power control step range. The power of the base station is measured after 10 consecutive equal TPC bits ('1' or '0').

"(All 1) Maximum Power"

A all 1 pattern is sent continuously. The base station is forced to maximum power. This selection is only available in edit mode "User Definable"

"(All 0) Minimum Power"

A all 0 pattern is sent continuously. The base station is forced to minimum power. This selection is only available in edit mode "User Definable"

"User Defined Pattern"

The TPC repeat pattern can be input. When "User Defined Pattern" is selected, an input field appears for entering the pattern. The maximum bit pattern length is 64 bits. This selection is only available in edit mode "User Definable"

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:PATTern on page 561

"Data List" The TPC repeat pattern is taken from a data list. When "Data List" is selected, a button appears for calling the "File Select" window.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:DSELect on page 560

Remote command:

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa on page 560

7.3.2.2 Carrying Out the Test Case 6.4.2 Measurement

For the preset Marker Configuration "Auto", Marker 1 starts delayed by the TPC start pattern length.

Each slot takes 0.625 ms and consists of 2560 chips. Depending on the slot format 1 or 2 TPC bits are sent for each slot.

Parameter	Value
Frequency	B, M and T
Test Model	2
Transmit power	Any
Scrambling Code	Any

Table 7-16: The following table lists the settings on the base station:

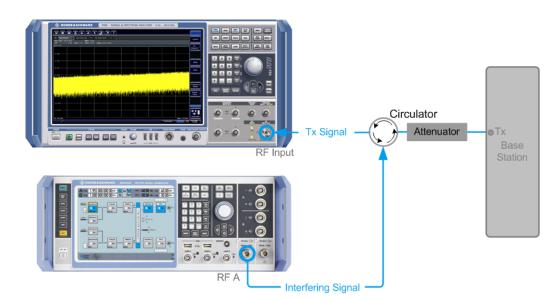
- 1. Set the base station to the basic state
 - a) Initialize the base station,
 - b) Set the scrambling scheme,
 - c) Set the base station to test model 2,
 - d) Set the frequency
- 2. Set the signal generator to the basic state
 - Preset the signal generator unless some settings (e.g. in terms of I/Q and RF blocks) have to be kept.
- 3. Set the analyzer to the basic state

- a) Set the test case wizard
- b) Open the 3GPP FDD menu in the baseband block
- c) Open the Test Case Wizard and select Test Case 6.4.2.
 The General Settings parameters are preset according to TS 25.141
- d) Enter scrambling code and scrambling mode according to the base station scrambling scheme.
- e) Enter the power class of the base station under test. The RF level is automatically adjusted to the selected power class.
- f) Enter the test frequency (e.g. M). It must be the same as the base station has been set to.
- g) Enter the Wanted Signal parameters.
- h) Activate the settings with the "Apply Settings" button.
 The signal generator is now ready to start signal generation
- 4. Set the analyzer to the measurement frequency
- 5. Switch on RF output
- 6. Start the measurement
 - a) Send a start trigger impulse from the base station to the signal generator and to the analyzer.

Signal generation and measurement procedures are started.

7. Calculate the result

The analyzer calculates the resulting code domain power of the BS downlink channel.


7.3.3 Test Case 6.6 - Transmit Intermodulation

The test case requires the basic configuration.

It can be performed using the standard test setup according to TS 25.141. A vector signal analyzer is required, e.g. the Vector Signal Analyzer R&S FSQ.

For the signal generator, in case of two-path instruments signal routing to path A is assumed.

RF port A is connected to the RF input of the analyzer via a circulator and an external attenuator. The Tx Signal of the base station is connected to the RF input of the analyzer via a circulator.

The signal generator outputs the test model interfering signal with different frequency offsets in relation to the BS carrier frequency and provides the trigger for the analyzer ("Marker 1").

7.3.3.1 Test Purpose and Test Settings - Test Case 6.6

The test case verifies that a BS transmitter has the capability to inhibit intermodulation products of non linear elements caused by the presence of an interfering signal at the adjacent frequency channels from the signal generator.

The test is passed when the transmit intermodulation level is below an upper out of band emission and spurious emission threshold at the test frequencies B, M, and T.

Quotation from TS 25.141

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna

The transmit intermodulation level is the power of the intermodulation products when a WCDMA modulated interference signal is injected into an antenna connector at a mean power level of 30 dB lower than that of the mean power of the wanted signal. The frequency of the interference signal shall be 5 MHz, 10 MHz and 15 MHz offset from the subject signal carrier frequency, but exclude interference frequencies that are outside of the allocated frequency band for UTRA-FDD downlink specified in subclause 3.4.1.

The requirements are applicable for single carrier.

3GPP FDD: Test Case Wizard (TS 25.141)				_	X
Interferer						
60						
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00						
-80 Kei						
<u>د</u> _90						
-100						
	1.958	1.959	1.96 Frequency / GHz	1.961	1.962	
General Base Station O Inter	ferer					
Test Case 6.6 Transmit Intermod	dulation					•
Edit Mode		Accord	ding to Standard - I	Marker Config	uration Auto	•
Trigger Configuration		Auto (I	Ext. Trigger 1)			
Baseband A Signal Routing		To Pat	n and RF Port A •			
6.6 Transmit Intermodulation					App	bly

General	Base Station	O Interferer		
Scramblin	g Code (hex)	0000		
Scramblin	g Mode	On		
RF Freque	ency		1.950 000 000 00	GHz
Power Lev	/el		-30.00	dBm

General Base Stati	on Interferer		
State	Off On	Frequency Offset	+10 MHz ·
Interference Model	Test Model 1, 64 DPCHs	- Interferer Level / Wanted Signal Level	-30.00 dB

BS Frequency - Test Case 6.6

Enters the RF frequency of the base station.

Note: In this test case the signal generator generates no wanted signal, but just the interfering signal.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:BSSignal:FREQuency on page 549

BS RF Power - Test Case 6.6

Enters the RF power of the base station.

Note: In this test case the signal generator generates no wanted signal, but just the interfering signal.

Remote command:

[:SOURce]:BB:W3GPp:TS25141:BSSignal:POWer on page 549

Interferer State - Test Case 6.6

Enables/disables the signal generation of the interfering 3GPP signal.

In edit mode "According to Standard" the state is fixed to "On".

NoteIn this test case the signal generator generates no wanted signal, but just the interfering signal .

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:STATe on page 555

Interferer Mode - Test Case 6.6

Selects the interfering signal from a list of test models in accordance with TS 25.141. All test models refer to the predefined downlink configurations. In edit mode "According to Standard" Test Model 1, 64 DPCHs is fixed.

The following test models are available for selection in edit mode "User Definable":

- Test Model 1; 64 DPCHs
- Test Model 1; 16 Channels
- Test Model 1; 32 Channels
- Test Model 2
- Test Model 3; 16 Channels
- Test Model 3; 32 Channels
- Test Model 4
- Test Model 5; 38 Channels
- Test Model 5; 28 Channels
- Test Model 5; 8 Channels

Remote-control command: TM164

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:SETTing:TMODel:BSTation on page 555

Frequency Offset - Test Case 6.6

Enters the frequency offset of the interfering signal versus the wanted signal.

In edit mode "According to Standard" the choice is limited to values between +/-15 MHz in 5 MHz steps:

Remote-control command: -15 MHz

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:FOFFset on page 552

Interferer Level to Signal Level - Test Case 6.6

Enters the ratio of interfering signal level versus wanted signal level.

In edit mode "According to Standard" the value is fixed to - 30 dB:

Remote-control command: -30

Remote command:

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CNRatio on page 551

7.3.3.2 Carrying Out a Test Case 6.6 Measurement

The signal generator outputs the test model interfering signal.

Table 7-17: The following table lists the settings on the base station:

Parameter	Value
Frequency	B, M and T
Test Model	1
Transmit power	Maximum
Scrambling Code	any

- 1. Set the base station to the basic state
 - a) Initialize the base station,
 - b) Set the scrambling scheme,
 - c) Set the base station to test model 1,
 - d) Set maximum transmit power,
 - e) Set the frequency
- 2. Set the signal generator to the basic state
 - a) Preset the signal generator unless some settings (e.g. in terms of I/Q and RF blocks) have to be kept.
- 3. Set the analyzer to the basic state
- 4. Set the test case wizard
 - a) Open the 3GPP FDD menu in the baseband block
 - b) Open the Test Case Wizard and select Test Case 6.6.
 The "General Settings" parameters are preset according to TS 25.141
 - c) Enter scrambling code and scrambling mode according to the base station scrambling scheme.
 - d) Enter the power class of the base station under test. The RF level is automatically adjusted to the selected power class.
 - e) Enter the test frequency (e.g. M). It must be the same as the base station has been set to.
 - f) Enter the Interfering Signal parameters.
 - g) Activate the settings with the "Apply Settings" button.
 The signal generator is now ready to start signal generation
- 5. Set the analyzer to the measurement frequency
- 6. Switch on RF output
- 7. Start the measurement

a) Send a start trigger impulse from the base station to the signal generator and to the analyzer.

Signal generation and measurement procedures are started.

8. Calculate the result

The analyzer calculates the out of band emission and the spurious emission.

8 Remote-Control Commands

The following commands are required to perform signal generation with the 3GPP FDD options in a remote environment. We assume that the R&S SMW has already been set up for remote operation in a network as described in the R&S SMW documentation. Knowledge about the remote control operation and the SCPI command syntax are assumed.

Conventions used in SCPI command descriptions

For a description of the conventions used in the remote command descriptions, see section "Remote Control Commands" in the R&S SMW user manual.

Common Suffixes

The following common suffixes are used in remote commands:

Suffix	Value range	Description
ENTity <ch></ch>	14	entity in a multiple entity configuration with separate base- bad sources ENTity3 4 require option R&S SMW-K76
SOURce <hw></hw>	[1] 4	available baseband signals only SOURcel possible, if the keyword ENTity is used
OUTPut <ch></ch>	13	available markers
BSTation <st></st>	14	Base station If the suffix is omitted, BS1 is selected.
CHANnel <ch></ch>	0 138	channel If the suffix is omitted, Channel1 is selected.
MSTation <st></st>	14	user equipment. If the suffix is omitted, MS1 is selected.

Using SCPI command aliases for advanced mode with multiple entities

You can address multiple entities configurations by using the SCPI commands starting with the keyword SOURce or the alias commands starting with the keyword ENTity.

Note that the meaning of the keyword SOURce<hw> changes in the second case.

For details, see section "SCPI Command Aliases for Advanced Mode with Multiple Entities" in the R&S SMW user manual.

The commands in the SOURCE: BB: W3GPp subsystem are described in several sections, separated into general remote commands, commands for base station settings and commands for user equipment settings.

This subsystem contains commands for the primary and general settings of the 3GPP FDD standard. These settings concern activation and deactivation of the standard, set-

ting the transmission direction, filter, clock, trigger and clipping settings, defining the chip rate and the sequence length, as well as the preset and power adjust setting.

The commands for setting the base station and the user equipment, the enhanced channels of the base and user equipment, as well as the commands for selecting the test models and the test setups, are described in separate sections. The commands are divided up in this way to make the extremely comprehensive SOURce:BB:W3GPp subsystem clearer.

The following commands specific to the 3GPP FDD options are described here:

•	General Commands	352
•	Filter/Clipping Settings	358
	Trigger Settings	
•	Marker Settings	369
	Clock Settings	
•	Test Models and Predefined Settings	373
•	Setting Base Stations	.378
•	Enhanced Channels of Base Station 1	426
•	User Equipment Settings	447
•	Enhanced Channels of the User Equipment	532
•	Setting up Test Cases according to TS 25.141	.545

8.1 General Commands

[:SOURce <hw>]:BB:W3GPp:PRESet</hw>	352
[:SOURce <hw>]:BB:W3GPp:SETTing:CATalog?</hw>	.353
[:SOURce <hw>]:BB:W3GPp:SETTing:DELete</hw>	353
[:SOURce <hw>]:BB:W3GPp:SETTing:LOAD</hw>	353
[:SOURce <hw>]:BB:W3GPp:SETTing:STORe</hw>	354
	.354
	354
	.355
	355
[:SOURce <hw>]:BB:W3GPp:BSTation:PRESet</hw>	.355
[:SOURce <hw>]:BB:W3GPp:COPY:COFFset</hw>	355
[:SOURce <hw>]:BB:W3GPp:COPY:DESTination</hw>	
[:SOURce <hw>]:BB:W3GPp:COPY:EXECute</hw>	356
	.357
	357
	.357
	358

[:SOURce<hw>]:BB:W3GPp:PRESet

Sets the parameters of the digital standard to their default values (*RST values specified for the commands).

Not affected is the state set with the command SOURce<hw>:BB:W3GPp:STATe.

Example:SOURce1:BB:W3GPp:PRESetUsage:EventManual operation:See "Set to default" on page 55

[:SOURce<hw>]:BB:W3GPp:SETTing:CATalog?

This command reads out the files with 3GPP FDD settings in the default directory. The default directory is set using command MMEM:CDIRectory. Only files with the file extension *.3g will be listed.

Return values: <catalog></catalog>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/3gpp sets the default directory. BB:W3GP:SETT:CAT? reads out all the files with 3GPP FDD settings in the default directory. Response: UPLINK,DOWNLINK the files UPLINK and DOWNLINK are available.</pre>
Usage:	Query only
Manual operation:	See "Save/Recall" on page 55

[:SOURce<hw>]:BB:W3GPp:SETTing:DELete <Filename>

This command deletes the selected file with 3GPP FDD settings The directory is set using command MMEM:CDIRectory. A path can also be specified, in which case the files in the specified directory are read. The file extension may be omitted. Only files with the file extension *.3g will be deleted.

Setting parameters: <filename></filename>	<file_name></file_name>
Example:	BB:W3GP:SETT:DEL 'UPLINK' deletes file UPLINK.
Usage:	Setting only
Manual operation:	See "Save/Recall" on page 55

[:SOURce<hw>]:BB:W3GPp:SETTing:LOAD <Filename>

This command loads the selected file with 3GPP FDD settings The directory is set using command MMEM:CDIRectory. A path can also be specified, in which case the files in the specified directory are read. The file extension may be omitted. Only files with the file extension *.3g will be loaded.

Setting parameters:

<Filename> <file_name>

Example:	BB:W3GP:SETT:LOAD	'UPLINK'
	loads file UPLINK.	
Usage:	Setting only	
Manual operation:	See "Save/Recall" on pa	age 55

[:SOURce<hw>]:BB:W3GPp:SETTing:STORe <Filename>

This command stores the current 3GPP FDD settings into the selected file. The directory is set using command MMEM: CDIRectory. A path can also be specified, in which case the files in the specified directory are read. Only the file name has to be entered. 3GPP FDD settings are stored as files with the specific file extensions *.3g.

Setting parameters:

<filename></filename>	string
Example:	BB:W3GP:SETT:STOR 'UPLINK' stores the current 3GPP FDD settings into file UPLINK.
Usage:	Setting only
Manual operation:	See "Save/Recall" on page 55

[:SOURce<hw>]:BB:W3GPp:SLENgth <SLength>

Defines the sequence length of the arbitrary waveform component of the 3GPP signal in the number of frames. This component is calculated in advance and output in the arbitrary waveform generator. It is added to the realtime signal components (Enhanced Channels).

When working in Advanced Mode (W3GP:BST1:CHAN:HSDP:HSET:AMOD ON), it is recommended to adjust the current ARB sequence length to the suggested one.

Parameters:

<slength></slength>	integer Range:	1 to Max. No. of Frames = Arbitrary waveform
	*RST:	memory size/(3.84 Mcps x 10 ms). 1
Example:	BB:W3GP:SLEN 10 sets the sequence length to 10 frames.	
Manual operation:	See "Current ARB sequence length" on page 106	

[:SOURce<hw>]:BB:W3GPp:STATe <State>

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Parameters:

<state></state>	0 1 OFF ON	
	*RST:	0

General Commands

Example: SOURce1:BB:W3GPp:STATe ON

Manual operation: See "State" on page 54

[:SOURce<hw>]:BB:W3GPp:WAVeform:CREate <Filename>

This command creates a waveform using the current settings of the 3GPP FDD menu. The file name is entered with the command. The file is stored with the predefined file extension *.wv. The file name and the directory it is stored in are user-definable.

Setting parameters: <filename></filename>	<file_name></file_name>
Example:	MMEM:CDIR '/var/user/temp/waveform' sets the default directory to /var/user/temp/waveform. BB:W3GP:WAV:CRE 'gpp3_bs' creates the waveform file gpp3_bs.wv in the default directory.
Usage:	Setting only
Manual operation:	See "Generate Waveform" on page 55

[:SOURce]:BB:W3GPp:GPP3:VERSion?

The command queries the version of the 3GPP standard underlying the definitions.

Return values: <version></version>	string
Example:	BB:W3GP:GPP3:VERS? queries the 3GPP version.
Usage:	Query only
Manual operation:	See "3GPP Version" on page 56

[:SOURce<hw>]:BB:W3GPp:BSTation:PRESet

The command produces a standardized default for all the base stations. The settings correspond to the *RST values specified for the commands.

All base station settings are preset.

Example:	BB:W3GP:BST:PRES resets all the base station settings to default values.
Usage:	Event
Manual operation:	See "Reset all Base Stations" on page 67

[:SOURce<hw>]:BB:W3GPp:COPY:COFFset <COffset>

Sets the offset for the channelization code in the destination base station.

Parameters:			
<coffset></coffset>	integer		
	Range:	0 to 511	
	*RST:	0	
Example:	BB:W3GP:COPY:COFF 10 the channelization code is shifted by 10 when the source base station is copied to the destination base station.		
Manual operation:	See "Copy I	Basestation/Copy User Equipment" on page 68	

[:SOURce<hw>]:BB:W3GPp:COPY:DESTination < Destination>

The command selects the station to which data is to be copied. Whether the data is copied to a base station or a user equipment depends on which transmission direction is selected (command W3GPp:LINK UP | DOWN).

Parameters:

<destination></destination>	1 2 3 4		
	Range: 1 to 4 *RST: 2		
Example:	BB:W3GP:LINK DOWN selects the downlink transmit direction (base station to user equipment). BB:W3GP:COPY:SOUR 1 selects base station 1 as the source. BB:W3GP:COPY:DEST 4 selects base station 4 as the destination. BB:W3GP:COPY:EXEC starts copying the parameter set of base station 1 to base sta- tion 4.		
Manual operation:	See "Copy Basestation/Copy User Equipment" on page 68		

[:SOURce<hw>]:BB:W3GPp:COPY:EXECute

The command starts the copy process. The dataset of the source station is copied to the destination station. Whether the data is copied to a base station or a user equipment depends on which transmission direction is selected (command W3GPp:LINK UP | DOWN).

Example:	BB:W3GP:COPY:EXEC starts copying the parameter set of the selected source station to the selected destination station.
Usage:	Event
Manual operation:	See "Copy Basestation/Copy User Equipment" on page 68

[:SOURce<hw>]:BB:W3GPp:COPY:SOURce <Source>

The command selects the station that has data to be copied. Whether the station copied is a base or user equipment depends on which transmission direction is selected (command W3GPp:LINK UP | DOWN).

Parameters:

<source/>	1 2 3 4 Range: 1 to 4 *RST: 1
Example:	BB:W3GP:LINK UP selects the uplink transmit direction (user equipment to base sta- tion). BB:W3GP:COPY:SOUR 1 selects user equipment 1 as the source. BB:W3GP:COPY:DEST 4 selects user equipment 4 as the destination. BB:W3GP:COPY:EXEC starts copying the parameter set of user equipment 1 to user equipment 4.
Manual operation:	See "Copy Basestation/Copy User Equipment" on page 68

[:SOURce<hw>]:BB:W3GPp:LINK <Link>

The command defines the transmission direction. The signal either corresponds to that of a base station (FORWard | DOWN) or that of a user equipment (REVerse | UP).

Parameters: <link/>	DOWN UF *RST:	P FORWard REVerse FORWard DOWN
Example:	BB:W3GP:LINK DOWN the transmission direction selected is base station to user equip- ment. The signal corresponds to that of a base station.	
Manual operation:	See "Link D	irection" on page 56

[:SOURce<hw>]:BB:W3GPp:POWer:ADJust

The command sets the power of the active channels in such a way that the total power of the active channels is 0 dB. This will not change the power ratio among the individual channels.

Example:	BB:W3GP:POW:ADJ the total power of the active channels is set to 0 dB, the power ratio among the individual channels is unchanged.
Usage:	Event
Manual operation:	See "Adjust Total Power to 0dB" on page 70

[:SOURce<hw>]:BB:W3GPp:POWer[:TOTal]?

The command queries the total power of the active channels. After "Power Adjust", this power corresponds to 0 dB.

Return values:

<total></total>	float
Example:	BB:W3GP:POW? queries the total power of the active channels. Response: -22.5 the total power is -25 dB.
Usage:	Query only
Manual operation:	See "Total Power" on page 70

8.2 Filter/Clipping Settings

[:SOURce <hw>]:BB:W3GPp:CLIPping:LEVel [:SOURce<hw>]:BB:W3GPp:CLIPping:MODE</hw></hw>	359
[:SOURce <hw>]:BB:W3GPp:CLIPping:STATe [:SOURce<hw>]:BB:W3GPp:CRATe?</hw></hw>	
[:SOURce <hw>]:BB:W3GPp:CRATe:VARiation</hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:APCO25</hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:COSine [:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:GAUSs</hw></hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:LPASs</hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:LPASSEVM</hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:RCOSine</hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:SPHase</hw>	
[:SOURce <hw>]:BB:W3GPp:FILTer:TYPE</hw>	

[:SOURce<hw>]:BB:W3GPp:CLIPping:LEVel <Level>

The command sets the limit for level clipping (Clipping). This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Level clipping is activated with the command SOUR:BB:W3GP:CLIP:STAT ON

Parameters: <level></level>	integer Range: *RST:	1 to 100 100
Example:	BB:W3GP:CLIP:LEV 80PCT sets the limit for level clipping to 80% of the maximum level. BB:W3GP:CLIP:STAT ON activates level clipping.	
Manual operation:	See "Clippir	ng Level" on page 262

[:SOURce<hw>]:BB:W3GPp:CLIPping:MODE <Mode>

The command sets the method for level clipping (Clipping).

Parameters:

<mode></mode>	VECTor SCALar	
	VECTor The reference level is the amplitude i+jq	
	SCALar The reference level is the absolute maximum of the I and Q values.	
	*RST: VECTor	
Example:	BB:W3GP:CLIP:MODE SCAL selects the absolute maximum of all the I and Q values as the reference level. BB:W3GP:CLIP:LEV 80PCT sets the limit for level clipping to 80% of this maximum level. BB:W3GP:CLIP:STAT ON activates level clipping.	
Manual operation:	See "Clipping Mode" on page 263	

[:SOURce<hw>]:BB:W3GPp:CLIPping:STATe <State>

The command activates level clipping (Clipping). The value is defined with the command BB:W3GPp:CLIPping:LEVel, the mode of calculation with the command BB:W3GPp:CLIPping:MODE.

Parameters:

<state></state>	0 1 OFF ON *RST: 0
Example:	BB:W3GP:CLIP:STAT ON activates level clipping.

Manual operation: See "Clipping State" on page 261

[:SOURce<hw>]:BB:W3GPp:CRATe?

The command queries the set system chip rate. The output chip rate can be set with the command SOUR: BB:W3GP:CRAT:VAR.

Return values:		
<crate></crate>	R3M8	
	*RST:	R3M8
Example:	BB:W3GP:CRAT? queries the system chip rate. Response: R3M8 the system chip rate is 3.8 Mcps.	

Usage: Query only

Manual operation: See "Chip Rate" on page 56

[:SOURce<hw>]:BB:W3GPp:CRATe:VARiation </ariation>

Sets the output chip rate.

The chip rate entry changes the output clock and the modulation bandwidth, as well as the synchronization signals that are output. It does not affect the calculated chip sequence.

Parameters:

<variation></variation>	float		
	Range: Increment: *RST:	400 to 5E6 0.001 3.84 MCps	
Example:	BB:W3GP:CRAT:VAR 4086001 sets the chip rate to 4.08 Mcps.		
Manual operation:	See "Chip Rate Variation" on page 260		

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:APCO25 <Apco25>

The command sets the roll-off factor for filter type APCO25.

Parameters: <apco25></apco25>	float	
	Range: Increment: *RST:	0.05 to 0.99 0.01 0.2
Example:	BB:W3GP:FILT:PAR:APC025 0.2 sets the roll-off factor to 0.2 for filter type APCO25.	
Manual operation:	See "Roll O	ff Factor or BxT" on page 260

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:COSine <Cosine>

The command sets the roll-off factor for the Cosine filter type.

Parameters:

<cosine></cosine>	float	
	Range: Increment: *RST:	
Example:	BB:W3GP:FILT:PAR:COS 0.35 sets the roll-off factor to 0.35 for filter type Cosine.	
Manual operation:	See "Roll Off Factor or BxT" on page 260	

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:GAUSs <Gauss>

The command sets the roll-off factor for the Gauss filter type.

Parameters:	
10	

<gauss></gauss>	float		
	Range: Increment: *RST:	0.15 to 2.5 0.01 0.5	
Example:	BB:W3GP:FILT:PAR:GAUS 0.5 sets B x T to 0.5 for the Gauss filter type.		
Manual operation:	See "Roll O	ff Factor or BxT" on page 260	

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:LPASs <LPass>

Sets the cut off frequency factor for the Lowpass (ACP opt.) filter type. The minimum/ maximum values depend on the current symbol rate:

Parameters:

<lpass></lpass>	float	
	Range: Increment: *RST:	0.05 to 2 0.01 0.5
Example:	BB:W3GP:FILT:PAR:LPAS 0.5 the cut of frequency factor is set to 0.5.	
Manual operation:	See "Cut O	ff Frequency Factor" on page 260

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:LPASSEVM <LPassEvm>

Sets the cut off frequency factor for the Lowpass (EVM opt.) filter type.

Parameters:

<lpassevm></lpassevm>	float		
	Range: Increment: *RST:	0.05 to 2 0.01 0.5	
Example:	BB:W3GP:FILT:PAR:LPASSEVM 0.5 the cut of frequency factor is set to 0.5.		
Manual operation:	See "Cut Off Frequency Factor" on page 260		

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:RCOSine <RCosine>

The command sets the roll-off factor for the Root Cosine filter type.

Parameters:		
<rcosine></rcosine>	float	
	Range:	0 to 1.0
	Increment:	0.01
	*RST:	0.22
Example:	BB:W3GP:FILT:PAR:RCOS 0.22 sets the roll-off factor to 0. 22 for filter type Root Cosine.	
Manual operation:	See "Roll O	ff Factor or BxT" on page 260

[:SOURce<hw>]:BB:W3GPp:FILTer:PARameter:SPHase <SPhase>

The command sets B x T for the Split Phase filter type.

Parameters: <sphase></sphase>	float	
	Range: Increment: *RST:	0.15 to 2.5 0.01 2
Example:	BB:W3GP:FILT:PAR:SPH 0.5 sets B x T to 0.5 for the Split Phase filter type.	
Manual operation:	See "Roll O	ff Factor or BxT" on page 260

[:SOURce<hw>]:BB:W3GPp:FILTer:TYPE <Type>

The command selects the filter type.

Parameters:

<type></type>	RCOSine COSine GAUSs LGAuss CONE COF705 COEQualizer COFequalizer C2K3x APCO25 SPHase RECTangle LPASs DIRac ENPShape EWPShape LPASSEVM PGAuss *RST: RCOSine
Example:	BB:W3GP:FILT:TYPE COS sets the filter type COSine.
Manual operation:	See "Filter" on page 259

8.3 Trigger Settings

This section lists the remote control commands, necessary to configure the trigger.

[:SOURce <hw>]:BB:W3GPp:TRIGger:ARM:EXECute</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:EXECute</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:EXTernal:SYNChronize:OUTPut</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OBASeband:DELay</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OBASeband:INHibit</hw>	

Trigger Settings

[:SOURce <hw>]:BB:W3GPp:TRIGger:RMODe?</hw>	365
[:SOURce <hw>]:BB:W3GPp:TRIGger:SLENgth</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:SLUNit</hw>	366
[:SOURce <hw>]:BB:W3GPp:TRIGger:SOURce</hw>	366
[:SOURce <hw>]:BB:W3GPp:TRIGger[:EXTernal]:DELay</hw>	367
[:SOURce <hw>]:BB:W3GPp:TRIGger[:EXTernal]:INHibit</hw>	368
[:SOURce <hw>]:BB:W3GPp[:TRIGger]:SEQuence</hw>	

[:SOURce<hw>]:BB:W3GPp:TRIGger:ARM:EXECute

The command stops signal generation for trigger modes Armed_Auto and Armed_Retrigger. A subsequent internal or external trigger event restart signal generation.

Example:	BB:W3GP:TRIG:SOUR INT
	sets internal triggering.
	BB:W3GP:TRIG:SEQ ARET
	sets Armed_Retrigger mode, i.e. every trigger event causes sig-
	nal generation to restart.
	BB:W3GP:TRIG:EXEC
	executes a trigger, signal generation is started.
	BB:W3GP:TRIG:ARM:EXEC
	signal generation is stopped.
	BB:W3GP:TRIG:EXEC
	executes a trigger, signal generation is started again.
Usage:	Event
Manual operation:	See "Arm" on page 59

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXECute

The command executes a trigger. The internal trigger source must be selected using the command BB:W3GP:TRIG:SOUR INT and a trigger mode other than AUTO must be selected using the command :BB:W3GP:TRIG:SEQ.

Example:	BB:W3GP:TRIG:SOUR INT sets internal triggering. BB:W3GP:TRIG:SEQ RETR sets Retrigger mode, i.e. every trigger event causes signal gen- eration to restart. BB:W3GP:TRIG:EXEC executes a trigger.
Usage:	Event
Manual operation:	See "Execute Trigger" on page 59

[:SOURce<hw>]:BB:W3GPp:TRIGger:EXTernal:SYNChronize:OUTPut <Output>

Enables/disables output of the signal synchronous to the external trigger event.

Trigger Settings

Parameters: <output></output>	0 1 OFF ON *RST: 1
Example:	BB:W3GPp:TRIG:SOUR EXT sets external triggering. BB:W3GPp:TRIG:EXT:SYNC:OUTP ON enables synchrounous output to external trigger
Manual operation:	See "Sync. Output to External Trigger" on page 59

[:SOURce<hw>]:BB:W3GPp:TRIGger:OBASeband:DELay <Delay>

Specifies the trigger delay (expressed as a number of samples) for triggering by the trigger signal from the second path.

Parameters:

<delay></delay>	float	
	Range: Increment: *RST:	0 to 16777215 0.01 0
Example:	sets for path from the set BB:W3GP:T	TRIG:SOUR OBAS h A the internal trigger executed by the trigger signal cond path (path B). TRIG:OBAS:DEL 50 y of 50 symbols for the trigger.
Manual operation:	See "Trigge	r Delay" on page 61

[:SOURce<hw>]:BB:W3GPp:TRIGger:OBASeband:INHibit <Inhibit>

Specifies the number of chips by which a restart is to be inhibited following a trigger event. This command applies only for triggering by the second path (two-path instruments only).

Parameters:

<inhibit></inhibit>	integer	
	Range: *RST:	0 to 67108863 0
Example:	sets for path from the se BB:W3GP:	IRIG: SOUR OBAS h A the internal trigger executed by the trigger signal cond path (path B). IRIG: INH 200 art inhibit for 200 chips following a trigger event.
Manual operation:	See "Exterr	nal Trigger Inhibit" on page 60

[:SOURce<hw>]:BB:W3GPp:TRIGger:RMODe?

The command queries the current status of signal generation for all trigger modes with 3GPP FDD modulation on.

Return values:

<rmode></rmode>	STOP RUN STOP the signal is not generated. A trigger event did not occur in the triggered modes, or signal generation was stopped by the com- mand :BB:W3GP:TRIG:ARM:EXECute (armed trigger modes only). RUN the signal is generated. A trigger event occurred in the triggered mode. *RST: STOP
Example:	BB:W3GP:TRIG:SOUR EXT sets external triggering. BB:W3GP:TRIG:MODE ARET selects the Armed_Retrigger mode. BB:W3GP:TRIG:RMOD? queries the current status of signal generation. Response: RUN the signal is generated, an external trigger was executed.
Usage:	Query only
Manual operation:	See "Running/Stopped" on page 58

[:SOURce<hw>]:BB:W3GPp:TRIGger:SLENgth <SLength>

Defines the length of the signal sequence to be output in the Single trigger mode.

Parameters: <slength></slength>	integer Range: *RST:	1 to 4293120000 1
Example:	sets trigger SOURce1:E sets unit ch SOURce1:E sets a sequ	BB:W3GPp:TRIGger:SEQuence SINGle mode Single. BB:W3GPp:TRIGger:SLUNit CHIP ips for the entry of sequence length. BB:W3GPp:TRIGger:SLENgth 200 ence length of 200 chips. The first 200 chips of the ne will be output after the next trigger event.
Manual operation:	See "Trigge	er Signal Duration" on page 58

[:SOURce<hw>]:BB:W3GPp:TRIGger:SLUNit <SLunit>

The command defines the unit for the entry of the length of the signal sequence (SOUR:BB:W3GPp:TRIG:SLEN) to be output in the Single trigger mode (SOUR:BB:W3GPp:SEQ SING).

Parameters:

<slunit></slunit>	CHIP FRAMe SLOT SEQuence		
	*RST: SEQuence		
Example:	BB:W3GP:SEQ SING		
	sets trigger mode Single.		
	BB:W3GP:TRIG:SLUN FRAM		
	sets unit frames for the entry of sequence length.		
	BB:W3GP:TRIG:SLEN 2		
	sets a sequence length of 2 frames. The current frame will be output twice after the next trigger event.		
Manual operation:	See "Signal Duration Unit" on page 58		

[:SOURce<hw>]:BB:W3GPp:TRIGger:SOURce <Source>

Selects the trigger signal source and determines the way the triggering is executed. Provided are internal triggering by means of a command, external trigger singnal via one of the provided local or global connectors and and triggering by a signal from the other paths.

Parameters:				
<source/>	INTB INTernal OBASeband EGT1 EGT2 EGC1 EGC2 ELTRigger INTA ELCLock BEXTernal EXTernal			
	INTernal Internal			
	INTA INTB Internal trigger from the other baseband			
	EGT1 EGT2 External global trigger			
	EGC1 EGC2 External global clock			
	ELTRigger External local trigger			
	ELCLock External local clock			
	OBASeband BEXTernal EXTernal Provided only for backward compatibility with other R&S signal generators. The R&S SMW accepts these values und maps them automati- cally as follow:			
	EXTernal = EGT1, BEXTernal = EGT2, OBASeband = INTA or INTB (depending on the current baseband) *RST: INTernal			
Example:	BB:W3GP:TRIG:SOUR INT selects an internal trigger source			
Manual operation:	See "Trigger Source" on page 59			

[:SOURce<hw>]:BB:W3GPp:TRIGger[:EXTernal]:DELay <Delay>

Sets the trigger delay.

Parameters:

<delay></delay>	float
	Range: 0 to 16777215 Increment: 0.01 *RST: 0 Default unit: samples
Example:	BB:W3GP:TRIG:SOUR EXT sets an external trigger. BB:W3GP:TRIG:EXT:DEL 50 sets a delay of 50 symbols for the trigger.
Manual operation:	See "Trigger Delay" on page 61

Trigger Settings

[:SOURce<hw>]:BB:W3GPp:TRIGger[:EXTernal]:INHibit < Inhibit>

Specifies the number of samples by which a restart is to be inhibited following an external trigger event.

Parameters:

<inhibit></inhibit>	integer	
	Range: *RST:	0 to 21.47*chipRate 0
Example:	BB:W3GP:TRIG:SOUR EXT selects an external trigger. BB:W3GP:TRIG:EXT:INH 200 sets a restart inhibit for 200 samples following a trigger event.	
Manual operation:	See "Exterr	nal Trigger Inhibit" on page 60

[:SOURce<hw>]:BB:W3GPp[:TRIGger]:SEQuence <Sequence>

The command selects the trigger mode.

Parameters:

<sequence></sequence>	AUTO RETRigger AAUTo ARETrigger SINGle
	Αυτο
	The modulation signal is generated continuously.
	RETRigger
	The modulation signal is generated continuously. A trigger event (internal or external) causes a restart.
	AAUTo
	The modulation signal is generated only when a trigger event occurs. After the trigger event the signal is generated continuously. Signal generation is stopped with command SOUR:BB:W3GP:TRIG:ARM:EXEC and started again when a
	trigger event occurs.
	ARETrigger The modulation signal is generated only when a trigger event
	occurs. The device automatically toggles to RETRIG mode. Every subsequent trigger event causes a restart.
	Signal generation is stopped with command
	SOUR:BB:W3GP:TRIG:ARM:EXEC and started again when a
	trigger event occurs.
	SINGle
	The modulation signal is generated only when a trigger event occurs. Then the signal is generated once to the length specified with command SOUR:BB:W3GP:TRIG:SLEN. Every subsequent
	trigger event causes a restart.

*RST: AUTO

 Example:
 BB:W3GP:SEQ AAUT

 sets the Armed_auto trigger mode; the device waits for the first trigger (e.g. with *TRG) and then generates the signal continuously.

 Manual operation:
 See "Trigger Mode" on page 58

8.4 Marker Settings

This section lists the remote control commands, necessary to configure the markers.

OUTPut<ch>

The numeric suffix to OUTPut distinguishes between the available markers.

[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut:DELay:FIXed</hw>	369
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay</ch></hw>	369
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MAXimum?</ch></hw>	370
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MINimum?</ch></hw>	370
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:MODE</ch></hw>	371
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:ONTime</ch></hw>	371
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime</ch></hw>	371
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod</ch></hw>	372

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut:DELay:FIXed <Fixed>

The command restricts the marker delay setting range to the dynamic range. In this range the delay can be set without restarting the marker and signal. If a delay is entered in setting ON but is outside this range, the maximum possible delay is set and an error message is generated.

The numeric suffix in OUTPut has no significance for this command, since the setting always affects every marker.

Parameters:

<fixed></fixed>	ON OFF	
	*RST:	OFF
Example:		RIG:OUTP:DEL:FIX ON marker signal delay setting range to the dynamic
Manual operation:	See "Marker	x Delay" on page 63

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay <Delay>

Defines the delay between the signal on the marker outputs and the start of the signal, expressed in terms of chips.

Parameters: <delay></delay>	float	
	Range: Increment: *RST:	0 to 16777215 1E-3 0
Example:		TRIG:OUTP2:DEL 16000 of 16000 chips for the corresponding marker signal.
Manual operation:	See "Marke	r x Delay" on page 63

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MAXimum?

The command queries the maximum marker delay for setting :BB:W3GPp:TRIG:OUTP:DEL:FIX ON.

<maximum></maximum>	float	
	Increment: 0.001	
Example:	 BB:W3GP:TRIG:OUTP:DEL:FIX ON restricts the marker signal delay setting range to the dynamic range. BB:W3GP:TRIG:OUTP:DEL:MAX queries the maximum of the dynamic range. Response: 20000 the maximum for the marker delay setting is 20000 chips. 	
Usage:	Query only	
Manual operation:	See "Marker x Delay" on page 63	

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MINimum?

The command queries the minimum marker delay for setting :BB:W3GPp:TRIGger:OUTPut:DELay:FIXed ON.

Return values: <minimum></minimum>	float Increment: 0.001
Example:	<pre>BB:W3GP:TRIG:OUTP:DEL:FIX ON restricts the marker signal delay setting range to the dynamic range. BB:W3GP:TRIG:OUTP:DEL:MIN queries the minimum of the dynamic range. Response: 0 the minimum for the marker delay setting is 0 chips.</pre>
Usage:	Query only
Manual operation:	See "Marker x Delay" on page 63

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:MODE <Mode>

Defines the signal for the selected marker output.

Parameters:

<Mode>

SLOT | RFRame | CSPeriod | SFNR | RATio | USER

SLOT

A marker signal is generated at the start of each slot (every 2560 chips or 0.667 ms).

RFRame

A marker signal is generated at the start of each frame (every 38400 chips or 10 ms).

CSPeriod

A marker signal is generated at the start of every arbitrary waveform sequence (depending on the selected arbitrary waveform sequence length, see [:SOURce<hw>]:BB:W3GPp:SLENgth). If the signal does not contain an arbitrary waveform component, a radio frame trigger is generated.

SFNR

A marker signal is generated at the start of every SFN period (every 4096 frames).

RATio

A marker signal corresponding to the Time Off / Time On specifications in the commands [:SOURce<hw>]:BB:W3GPp: TRIGger:OUTPut<ch>:OFFTime and [:SOURce<hw>]:BB: W3GPp:TRIGger:OUTPut<ch>:ONTime is generated.

USER

A marker signal is generated at the beginning of every userdefined period. The period is defined with command [: SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod.

*RST: RFRame

Example: SOURce1:BB:W3GPp:TRIGger:OUTPut2:MODE SLOT selects the slot marker for the corresponding marker signal.

Manual operation: See "Marker Mode" on page 62

integer

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:ONTime <OnTime> [:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime <OffTime>

Sets the number of chips in a period (ON time + OFF time) during which the marker signal in setting SOURCe:BB:W3GPp:TRIGger:OUTPut:MODE RATio on the marker outputs is OFF.

Parameters:

<OffTime>

Range: 1 to 16777215 *RST: 1 Default unit: chip

Clock Settings

 Example:
 BB:W3GP:TRIG:OUTP2:OFFT 2000

 sets an OFF time of 2000 chips for marker signal 2.

 Manual operation:
 See "Marker Mode" on page 62

[:SOURce<hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod <Period>

For user marker, sets the repetition rate for the signal at the marker outputs, expressed in terms of chips.

Parameters:

Manual operation:	See "Marker Mode" on page 62	
Example:	BB:W3GP:TRIG:OUTP2:MODE USER selects the user marker for the corresponding marker signal BB:W3GP:TRIG:OUTP2:PER 1600 sets a period of 1600 chips, i.e. the marker signal is repeated every 1600th chip.	
<pellou></pellou>	Range: 2 to 2^32-1 chips Increment: 1 chip *RST: 1 Frame (38 400 Chips)	
<period></period>	integer	

8.5 Clock Settings

[:SOURce<hw>]:BB:W3GPp:CLOCk:MODE <Mode>

Sets the type of externally supplied clock.

Parameters: <mode></mode>	CHIP MCHip *RST: CHIP	
Example:	SOURce1:BB:W3GPp:CLOCk:MODE CHIP selects clock type Chip, i.e. the supplied clock is a chip clock.	
Manual operation:	See "Clock Mode" on page 65	

[:SOURce<hw>]:BB:W3GPp:CLOCk:MULTiplier <Multiplier>

Sets the multiplier for clock type Multiplied.

Parameters: </br><Multiplier>

tiplier>	integer			
	Range:	1	to	64
	*RST:	4		

Example:	SOURce1:BB:W3GPp:CLOCk:SOURce EGC1 selects the external clock source. SOURce1:BB:W3GPp:CLOCk:MODE MCHip selects clock type multiplied, i.e. the supplied clock has a rate which is a multiple of the chip rate. SOURce1:BB:W3GPp:CLOCk:MULTiplier 12 the multiplier for the external clock rate is 12.
Manual operation:	

[:SOURce<hw>]:BB:W3GPp:CLOCk:SOURce <Source>

Selects the clock source.

Parameters:

i alameters.			
<source/>	INTernal EGC1 EGC2 ELCLock EXTernal		
	INTernal		
	The instrument uses its internal clock reference		
	EGC1 EGC2		
	External global clock		
	ELCLock		
	External local clock		
	EXTernal		
	EXTernal = EGC1		
	Setting only; provided for backward compatibility with other R&S		
	signal generators.		
	*RST: INTernal		
Example:	SOURce1:BB:W3GPp:CLOCk:SOURce INTernal		
	selects an internal clock reference.		
Manual operation:	See "Clock Source" on page 65		

8.6 Test Models and Predefined Settings

The provided commands gives you the opportunity to generate standardized or predefined test settings:

Test Models: •

- selection of test models for the downlink in accordance with 3GPP standard _ 25.141.
- Selection of non-standardized test models for the uplink.
- Predefined Settings: •

Definition of Predefined Settings for base station 1 which enable the creation of highly complex scenarios for the downlink by presetting the channel table of base station 1. The settings take effect only after execution of command BB:W3GPp:PPARameter:EXECute.

Test Models and Predefined Settings

[:SOURce <hw>]:BB:W3GPp:PPARameter:CRESt</hw>	374
[:SOURce <hw>]:BB:W3GPp:PPARameter:DPCH:COUNt</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:DPCH:SRATe</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:EXECute</hw>	375
[:SOURce <hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:SCCPch:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:SCHannels</hw>	
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:BSTation</hw>	376
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:BSTation:CATalog?</hw>	377
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:MSTation</hw>	
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:MSTation:CATalog?</hw>	

[:SOURce<hw>]:BB:W3GPp:PPARameter:CRESt <Crest>

This commands selects the desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate channelization codes and timing offsets.

The setting takes effect only after execution of command BB:W3GPp:PPARameter:EXECute.

The settings of commands

- BB:W3GP:BST<n>:CHAN<n>:CCODe and
- BB:W3GP:BST<n>:CHAN<n>:TOFFset

are adjusted according to the selection.

Parameters:

<Crest>

MINimum | AVERage | WORSt

MINimum

The crest factor is minimized. The channelization codes are distributed uniformly over the code domain. The timing offsets are increased by 3 per channel.

AVERage

An average crest factor is set. The channelization codes are distributed uniformly over the code domain. The timing offsets are all set to 0.

WORSt

The crest factor is set to an unfavorable value (i.e. maximum). The channelization codes are assigned in ascending order. The timing offsets are all set to 0.

*RST: MINimum

Example: BB:W3GP:PPAR:CRES WORS sets the crest factor to an unfavorable value.

Manual operation: See "Crest Factor" on page 77

[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:COUNt <Count>

Sets the number of activated DPCHs. The maximum number is the ratio of the chip rate and the symbol rate (maximum 512 at the lowest symbol rate of 7.5 ksps).

Parameters:

Manual operation: See "Number of DPCH" on page 77

[:SOURce<hw>]:BB:W3GPp:PPARameter:DPCH:SRATe <SRate>

This command sets the symbol rate of DPCHs.

The setting takes effect only after execution of command BB:W3GPp:PPARameter:EXECute.

Parameters:

<srate></srate>	D7K5 D15 *RST:	K D30K D60K D120k D240k D480k D960k D30K
Example:	BB:W3GP:PPAR:DPCH:SRAT D240K sets the symbol rate of the DPCHs to 240ksps.	
Manual operation:	See "Symbo	DI Rate DPCH" on page 77

[:SOURce<hw>]:BB:W3GPp:PPARameter:EXECute

This command presets the channel table of base station 1 with the parameters defined by the PPARameter commands.

Example:	BB:W3GP:PPAR:EXEC configures the signal sequence as defined by the :PPARamete: commands.	
Usage:	Event	
Manual operation:	See "Accept" on page 77	

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe <SRate>

The command sets the symbol rate of S-CCPCH.

The setting takes effect only after execution of command BB:W3GPp:PPARameter:EXECute.

Test Models and Predefined Settings

Parameters: <srate></srate>	D15K D30K D60K D120k D240k D480k D960k *RST: D30K	
Example:	BB:W3GP:PPAR:SCCP:SRAT D240K 'sets the SCCPCH to 240 ksps.	
Manual operation:	See "Symbol Rate S-CCPCH" on page 77	

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCCPch:STATe <State>

Activates/deactivates the S-CCPCH.

Parameters: <state></state>	0 1 OFF ON *RST: 0
Example:	BB:W3GP:PPAR:SCCP:STAT ON S-CCPCH is activated. BB:W3GPp:PPARameter:EXECute
Manual operation:	See "Use S-CCPCH" on page 77

[:SOURce<hw>]:BB:W3GPp:PPARameter:SCHannels <SChannels>

The command activates/deactivates the PCPICH, PSCH, SSCH and PCCPCH. These "special channels" are required by a user equipment for synchronization.

The setting takes effect only after execution of command BB:W3GPp:PPARameter:EXECute.

Parameters: <SChannels>

.

0 | 1 | OFF | ON *RST: 0

Manual operation: See "Use Channels" on page 76

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:BSTation <BStation>

Selects a standard test model for the downlink.

Parameters: <bstation></bstation>	string
Example:	<pre>SOURce1:BB:W3GPp:SETTing:TMODel:BSTation: CATalog? queries the list of available test models for the downlink trans- mission direction. Response: Test_Model_1_16channels, SOURce1:BB:W3GPp:SETTing:TMODel:BSTation: "Test_Model_1_64channels" selects the test model Measurement: Spectrum emission mask ACLR; 64 Channels.</pre>

Manual operation: See "Test Models Downlink" on page 72

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:BSTation:CATalog?

Queries the list of test models defined by the standard for the downlink.

Return values: <catalog></catalog>	string
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:SETTing:TMODel: BSTation on page 376</hw></pre>
Usage:	Query only
Manual operation:	See "Test Models Downlink" on page 72

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:MSTation <MStation>

he command selects a test model that is not defined by the standard for the uplink.

Parameters:

<mstation></mstation>	string
	DPCCH_DPDCH_60ksps Preset, Uplink, UE1 on, DPDCH + DPCCH, Overall symbol rate 60 ksps.
	DPCCH_DPDCH960ksps Preset, Uplink, UE1 on, DPDCH + DPCCH, Overall symbol rate 960 ksps
	TS34121_R6_Table_C_10_1_4_Subtest4 Uplink test model according to 3GPP TS 34.121 Release 6, Table C.10.1.4.
	TS34121_R8_Table_C_10_1_4_Subtest3 Uplink test models for transmitter characteristics tests with HS- DPCCH according to 3GPP TS 34.121 Release 8, Table C. 10.1.4.
	TS34121_R8_Table_C_11_1_3_Subtest2 Uplink test models for transmitter characteristics tests with HS- DPCCH and E-DCH according to 3GPP TS 34.121 Release 8, Table C.11.1.3.
	TS34121_R8_Table_C_11_1_4_Subtest1 Uplink test model for transmitter characteristics tests with HS- DPCCH and E-DCH with 16QAM according to 3GPP TS 34.121 Release 8, Table C.11.1.4.
Example:	BB:W3GP:SETT:TMOD:MST 'DPCCH_DPDCH960ksps' selects the test model with a symbol rate of 960 ksps.
Manual operation:	See "Test Models Uplink" on page 74

[:SOURce<hw>]:BB:W3GPp:SETTing:TMODel:MSTation:CATalog?

The command queries the list of non-standardized test models for the uplink.

Return values: <catalog></catalog>	string
Example:	BB:W3GP:SETT:TMOD:MST:CAT? queries the list of available test models Response: DPCCH_DPDCH960ksps,DPCCH_DPDCH_60ksps
Usage:	Query only
Manual operation:	See "Test Models Uplink" on page 74

8.7 Setting Base Stations

The SOURCe: BB: W3GPp: BSTation system contains commands for setting base stations. The commands of this system only take effect if the 3GPP FDD standard is activated, the DOWN transmission direction is selected and the particular base station is enabled:

```
SOURCe:BB:W3GPp:STATe ON
SOURce:BB:W3GPp:LINK DOWN
SOURce:BB:W3GPp:BSTation2:STATe ON
```

BSTation<st>

The numeric suffix to BSTation determines the base station. The value range is 1..4. If the suffix is omitted, BS1 is selected.

CHANnel<ch>

In case of remote control, suffix counting for channels corresponds to the suffix counting with 3GPP FDD (channel 0 to channel 138). SCPI prescribes that suffix 1 is the default state and used when no specific suffix is specified. Therefore, channel 1 (and not channel 0) is selected when no suffix is specified.

The commands for setting the enhanced channels of base station 1 are described in Chapter 8.8, "Enhanced Channels of Base Station 1", on page 426.

[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:STATe <State>

The command activates OCNS channels, as defined in the standard.

Four different OCNS scenarios are defined in the standard; one standard scenario, two scenarios for testing HSDPA channels and one for enhanced performance type 3i tests. The required scenario can be selected with the command [:SOURce<hw>]:BB: W3GPp:BSTation:OCNS:MODE.

Parameters:	
<state></state>	ON OFF
	*RST: OFF
Example:	BB:W3GP:BST:OCNS:MODE STAN selects the standard scenario. BB:W3GP:BST:OCNS:STAT ON activates the OCNS channels with the settings defined in the standard.
Manual operation:	See "OCNS On" on page 82

[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:MODE <Mode>

The command selects the scenario for setting the OCNS channels.

Four different OCNS scenarios are defined in the standard; one standard scenario, two scenarios for testing HSDPA channels and one for enhanced performance type 3i tests.

Parameters: <mode></mode>	STANdard HSDPa HSDP2 M3I *RST: STANdard	
Example:	BB:W3GP:BST:OCNS:MODE HSDP selects the scenario for testing the high-speed channels. BB:W3GP:BST:OCNS:STAT ON activates the OCNS channels with the settings defined in the standard.	
Options:	R&S SMW-K83	
Manual operation:	See "OCNS Mode" on page 82	

[:SOURce<hw>]:BB:W3GPp:BSTation:OCNS:SEED <Seed>

In "3i" OCNS mode, sets the seed for both the random processes, the power control simulation process and the process controlling the switch over of the channelization codes.

Parameters:

<seed></seed>	integer	
	Range: *RST:	0 to 65535 dynamic
Options:	R&S SMW-	K83

Manual operation: See "OCNS Seed" on page 83

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:HSDPa:HSET:PRESet

Sets the default settings of the channel table for the HSDPA H-Set mode. Channels 12 to 17 are preset for HSDPA H-Set 1.

Setting Base Stations

Example:	SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa:MODE HSET selects H-Set mode. SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa: HSET:PRES presets the H-Set. SOURce1:BB:W3GPp:BSTation1:CHANnel12:TYPE? Response: HSSC SOURce1:BB:W3GPp:BSTation1:CHANnel12:HSDPa: HSET:PREDefined? Response: P1QPSK
Usage:	

Manual operation: See "Preset HSDPA H-Set" on page 84

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel:PRESet

The command calls the default settings of the channel table.

Example:	BB:W3GP:BST:CHAN:PRES presets all channels of the base station.	
Usage:	Event	
Manual operation:	See "Reset All Channels" on page 84	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:ASLOt <ASlot>

Selects the slot in which the burst is transmitted.

Suffix: <ch0></ch0>	77	
Parameters: <aslot></aslot>	integer Range: *RST:	0 to 15 0
Example:	SOURce1:BB:W3GPp:BSTation1:CHANnel7:AICH:ASLOt 5 defines the slot to transmit the burst.	
Manual operation:	See "Access Slot" on page 140	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:SAPattern <SaPattern>

Enters the 16 bit pattern for the ACK/NACK field.

Parameters:

<SaPattern> <

<16 bit pattern> *RST: +00000000000

Setting Base Stations

Example:	SOURcel:BB:W3GPp:BSTation1:CHANnel <ch0>:AICH:</ch0>	
	SAPattern "+00000000000"	
	sets the bit pattern to "+000000000000" (ACK).	
Manual operation:	See "Signature ACK/NACK Pattern" on page 140	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAlch:ASLOt <ASlot>

Selects the slot in which the burst is transmitted.

Suffix: <ch0></ch0>	88		
Parameters: <aslot></aslot>	integer Range: *RST:	0 to 15 0	
Example:	ASLOt 5	BB:W3GPp:BSTation1:CHANnel8:APAIch:	
Manual operation:	See "Acces	See "Access Slot" on page 140	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:SAPattern <SaPattern>

Enters the 16 bit pattern for the ACK/NACK field.

This field is used by the base station to acknowledge, refuse or ignore requests of up to 16 user equipments.

Parameters:

<sapattern></sapattern>	<16 bit pattern>	
	*RST:	"+00000000000"
Example:	"+0000000	3GP:BST1:CHAN8:APAI:SAP 00000" pattern to "+" (ACK).
Manual operation:	See "Signat	ure ACK/NACK Pattern" on page 140

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:CCODe <CCode>

The command sets the channelization code (formerly the spreading code number). The range of values of the channelization code depends on the symbol rate of the channel. The standard assigns a fixed channelization code to some channels (P-CPICH, for example, always uses channelization code 0).

[chip-rate(=3.84Mcps) / symbol_rate] - 1

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters will be adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

<ccode></ccode>	integer Range: Increment: *RST:	0 to 511 1 depends on channel type
Example:		BST1:CHAN15:CCOD 123 Elization code 123 for channel 15 of base station 1.
Manual operation:	See "Chanr	nelization Code" on page 86

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA <Data>

The command determines the data source for the data fields of the specified channel.

For enhanced channels with channel coding, the data source is set with the command [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA on page 434.

Parameters:

<Data>

PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ZERO | ONE | PATTern

PNxx

The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.

DLISt

A data list is used. The data list is selected with the command :BB:W3GPp:BST:CHANnel:DATA:DSELect.

ZERO | ONE

Internal 0 and 1 data is used.

PATTern

Internal data is used The bit pattern for the data is defined by the command :BB:W3GPp:BST:CHANnel:DATA:PATTern.

*RST: PN9

Example: BB:W3GP:BST2:CHAN13:DATA PATT

selects as the data source for the data fields of channel 13 of base station 2, the bit pattern defined with the following command.

BB:W3GP:BST2:CHAN13:DATA:PATT #H3F,8 defines the bit pattern.

Manual operation: See "Data" on page 87

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	string
Example:	<pre>BB:W3GP:BST2:CHAN13:DATA DLIS selects the Data Lists data source. MMEM:CDIR '/var/user/temp/IqData' selects the directory for the data lists. BB:W3GP:BST2:CHAN13:DATA:DSEL '3gpp_list1' selects file '3gpp_list1' as the data source. This file must be in the directory /var/user/temp/IqData and have the file extension *.dm_iqd.</pre>

Manual operation: See "Data" on page 87

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:PATTern <Pattern>

The command determines the bit pattern for the PATTern selection. The maximum length is 64 bits.

Parameters:

<pattern></pattern>	64 bits		
	*RST:	#H0,1	
Example:	BB:W3GP:E	BST2:CHAN13:DATA:PATT bit pattern.	#H3F,8
Manual operation:	See "Data"	on page 87	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:MCODe <MCode>

The command activates multicode transmission for the selected channel (ON) or deactivates it (OFF). The multicode channels are destined for the same receiver, that is to say, are part of a radio link. The first channel of this group is used as the master channel. The common components (Pilot, TPC and TCFI) for all the channels are then spread using the spreading code of the master channel.

Parameters:

<MCode>

0 | 1 | OFF | ON *RST: 0

Example:	BB:W3GP:BST2:CHAN12:DPCC:MCOD ON activates the simulation in multicode mode for channel 12 of base station 2. BB:W3GP:BST2:CHAN13:DPCC:MCOD ON activates the simulation in multicode mode for channel 13 of base station 2. Channel 12 is the master channel.
Manual operation:	See "Multicode State (DPCCH)" on page 142

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth <PLength>

Sets the length of the pilot fields.

The range of values for this parameter depends on the channel type and the symbol rate. The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters will be adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

Developer

<plength></plength>	BIT2 BIT4 BIT8 BIT16 BIT0 *RST: BIT4, bei S-CCPCH 0
Example:	SOURce1:W3GPp:BSTation1:CHANnel12:DPCCh:PLENgth BIT8 sets the length of the pilot fields for channel 12 of base station 1.
Manual operation:	See "Pilot Length" on page 139

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset: PILot <Pilot>

Sets an offset to the set channel power for the pilot field.

Parameters: <pilot></pilot>	float	
	Range: Increment: *RST:	
Example:		BST2:CHAN12:DPCC:POFF:PIL -2 dB Tield, sets an offset of -2 dB relative to the channel
Manual operation:	See "Power	Offset Pilot (DPCCH)" on page 146

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TFCI <Tfci>

The command sets an offset to the set channel power for the TFCI field.

Parameters: <tfci></tfci>	float Range: Increment: *RST:	
Example:	in the TFCI power.	BST2:CHAN12:DPCC:POFF:PIL -2 dB field, sets an offset of -2 dB relative to the channel
Manual operation:	See "Power	Offset TFCI (DPCCH)" on page 146

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TPC <Tpc>

The command sets an offset to the set channel power for the TPC field.

This setting is only valid for the DPCHs.

Parameters:

<tpc></tpc>	float Range: Increment: *RST:	
Example:		BST2:CHAN12:DPCC:POFF:TPC -2 dB Tield, sets an offset of -2 dB relative to the channel
Manual operation:	See "Power	Offset TPC (DPCCH)" on page 146

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI <Tfci>

The command enters the value of the TFCI field (Transport Format Combination Indicator) for the selected channel of the specified base station. The TFCI field is always filled with exactly 10 bits with leading zeros.

Parameters:

<tfci></tfci>	integer	
	Range: *RST:	0 to 1023 0
Example:		ST2:CHAN12:DPCC:TFCI 22 ue 22 for the TFCI field of channel 12 of base station
Manual operation:	See "TFCI \	/alue" on page 139

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI:STATe <State>

The command activates the TFCI field (Transport Format Combination Identifier) for the selected channel of the specified base station.

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters will be adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

<state></state>	ON OFF *RST:	OFF
Example:	BB:W3GP:BST2:CHAN12:DPCC:TFCI:STAT OFF sets that the TFCI field of channel 12 of base station 2 is not used.	
Manual operation:	See "Use T	FCI" on page 138

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA <Data>

Determines the data source for the TPC field of the channel.

Parameters:

<Data>

Paramotore:

ZERO | ONE | PATTern | DLISt
DLISt
A data list is used. Use the command [:SOURce<hw>]:BB:
W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:
DSELect to define the data list file.
ZERO | ONE
Internal 0 and 1 data is used.
PATTern
Internal data is used. Use the command [:SOURce<hw>]:BB:
W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:

PATTern to define the bit battern.

*RST: ZERO

Example: SOURce1:BB:W3GPp:BSTation2:CHANnel13:DPCCh:TPC: DATA PATTern selects as the data source for the TPC field of channel 13 of base station 2 SOURce1:BB:W3GPp:BSTation2:CHANnel13:DPCCh:TPC: DATA:PATTern #H3F,8 defines the bit pattern.

Setting Base Stations

Example: SOURce1:BB:W3GPp:BSTation2:CHANnel13:DPCCh:TPC: DATA DLIS selects the data source. MMEM:CDIR '/var/user/temp/IqData' selects the directory for the data lists. SOURce1:BB:W3GPp:BSTation2:CHANnel13:DPCCh:TPC: DATA:DSELect 'tpc_ch4' selects the file tpc_ch4 as the data source. Manual operation: See "TPC Data Source (DPCCH)" on page 143

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: DSELect <DSelect>

Selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	<data list="" name=""></data>
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:DPCCh:TPC:DATA on page 386</ch0></st></hw></pre>
Manual operation:	See "TPC Data Source (DPCCH)" on page 143

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA: PATTern <Pattern>

Determines the bit pattern.

Parameters: <pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:	<pre>see [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:DPCCh:TPC:DATA on page 386</ch0></st></hw></pre>	
Manual operation:	See "TPC D	ata Source (DPCCH)" on page 143

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:MISuse <MisUse>

The command activates "mis-" use of the TPC field (Transmit Power Control) of the selected channel for controlling the channel powers of these channels of the specified base station.

The bit pattern (see commands :W3GPp:BSTation<n>:CHANnel<n>:DPCCh: TPC...) of the TPC field of each channel is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -60 dB. The step width of the change is defined with the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:DPCCh:TPC:PSTep.

Parameters:

<misuse></misuse>	ON OFF		
	*RST: 0		
Manual operation:	See "Misuse TPC for Output Power Control (DPCCH)" on page 145		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSTep <PowerStep>

The command defines the step width for the change of channel powers in the case of "mis-" use of the TPC field.

Parameters:

<powerstep></powerstep>	float	
	Range: Increment: *RST:	
Example:	BB:W3GP:BST2:CHAN13:DPCC:TPC:PST 1 dB sets the step width for the change of channel powers for channel 13 of base station 2 to 1 dB.	
Manual operation:	See "TPC Power Step (DPCCH)" on page 145	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:READ <Read>

The command sets the read out mode for the bit pattern of the TPC field.

The bit pattern is defined with the commands :BB:W3GPp:BST<i>:CHANnel<n>:DPCCh:TPC... .

inues
inues
inues
inues
inues
inues
s con- g on
s con- g on
ener-
ir s g

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC: DATA <Data>

The command determines the data source for the TPC field of the channel.

Parameters:

<Data>

DLISt | ZERO | ONE | PATTern

DLISt

A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:DSELect

ZERO | ONE

Internal 0 and 1 data is used.

PATTern

Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:PATTern.

*RST: PATTern

Example:	<pre>BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:DATA PATT selects as the data source for the TPC field of channel 11 of base station 1, the bit pattern defined with the following com- mand: BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:DATA:PATT #H3F,8 defines the bit pattern.</pre>
Manual operation:	See "TPC Source" on page 152

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC: DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters: <dselect></dselect>	<data list="" name=""></data>
Example:	<pre>BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:DATA DLIS selects the "Data Lists" data source. MMEM:CDIR '/var/user/temp/IqData' selects the directory for the data lists. BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:DATA:DSEL 'tpc_ch4' selects the file 'tpc_ch4' as the data source. This file must be in the directory /var/user/temp/IqData and have the file extension *.dm_iqd.</pre>
Manual operation:	See "TPC Source" on page 152

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC: DATA:PATTern <Pattern>

The command determines the bit pattern for the PATTern selection. The maximum bit pattern length is 32 bits.

<pattern></pattern>	64 bits *RST:	#H0,1
Example:	BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:DATA:PATT #H3F, 8 defines the bit pattern for the TPC field of channel 11 of base station 1.	
Manual operation:	See "TPC S	Source" on page 152

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC: MISuse <Misuse>

The command activates "mis-" use of the TPC field (Transmit Power Control) of the selected channel for controlling the channel powers of these channels of the specified base station.

The bit pattern (see command [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:PATTern) of the TPC field of each channel is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -60 dB. The step width of the change is defined with the command [:SOURce<hw>]: BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:PSTep.

Parameters:

<misuse></misuse>	ON OFF
	*RST: 0
Example:	BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:MIS ON activates regulation of channel power for channel 11 of base sta- tion 1 via the bit pattern of the associated TPC field. BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:PST 1dB sets the step width for the change of channel powers for channel 11 of base station 1 to 1 dB.

Manual operation: See "TPC For Output Power Control (Mis-) Use" on page 154

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC: PSTep <PStep>

The command defines the step width for the change of channel powers in the case of "mis-" use of the TPC field.

Suffix: <ch0></ch0>	11138	
Parameters: <pstep></pstep>	float Range: Increment: *RST:	-10.0 dB to 10.0 dB 0.01 dB 0 dB
Example:	BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:PST 1.5dB sets the step width for the change of channel powers for channel 11 of base station 1 to 1.5 dB.	
Manual operation:	See "TPC Power Step (F-DPCH)" on page 154	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC: READ <Read>

The command sets the read out mode for the bit pattern of the TPC field.

Parameters:	
<read></read>	CONTinuous S0A S1A S01A S10A
	CONTinuous
	The bit pattern is used cyclically.
	S0A
	The bit pattern is used once, then the TPC sequence continues with 0 bits.
	S1A
	The bit pattern is used once, then the TPC sequence continues with 1 bits.
	S01A
	The bit pattern is used once and then the TPC sequence is con- tinued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).
	S10A
	The bit pattern is used once and then the TPC sequence is con- tinued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).
	*RST: CONTinuous
Example:	BB:W3GP:BST1:CHAN11:FDPC:DPCC:TPC:READ S0A the bit pattern is used once, after which a 0 sequence is gener- ated (applies to channel 11 of base station 1).
Manual operation:	See "TPC Read Out Mode (F-DPCH)" on page 153

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODe[: STATe] <State>

The command activates/deactivates burst mode. The signal is bursted when on, otherwise dummy data are sent during transmission brakes.

Parameters:

<state></state>	ON OFF
	*RST: 1
Example:	BB:W3GP:BST1:CHAN12:HSDP:BMOD OFF deactivates burst mode, dummy data are sent during the trans- mission brakes.
Manual operation:	See "Burst Mode" on page 100

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:CVPB <Cvpb>

The command switches the order of the constellation points of the 16QAM and 64QAM mapping. The re-arrengement is done according to 3GPP TS25.212.

Parameters:		
<cvpb></cvpb>	integer	
	Range: *RST:	0 to 3 0
Example:		BST1:CHAN12:HSDP:CVPB 1 rchange of MSBs with LSBs.
Manual operation:	See "Const	ellation Version Parameter b - BS" on page 101

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:AMODe <AMode>

Activates/deactivates the advanced mode in which the H-Set will be generated by the ARB.

The parameter can be configured only for H-Sets 1 - 5.

For H-Sets 6 - 12 and User it is always enabled.

Ρ	ar	a	n	et	e	rs	1

<amode></amode>	ON OFF	
	*RST:	OFF (H-Sets 15); ON (H-Sets 612, User);
Example:	selects H-S BB:W3GP: selects H-S BB:W3GP:1	BST1:CHAN12:HSDP:MODE HSET Set mode. BST1:CHAN12:HSDP:HSET:PRED P1QAM16 Set 1 (16QAM). BST1:CHAN12:HSDP:HSET:AMOD ON Vanced mode for the selected H-Set.
Manual operation:	See "Advar	nced Mode (requires ARB)" on page 105

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: ACLength <AcLength>

Sets the alternative number of HS-PDSCH channelization codes (see Chapter 4.13.9, "Randomly Varying Modulation And Number Of Codes (Type 3i) Settings", on page 118).

Parameters:

<aclength></aclength>	integer
	Range:1 to15 (max depends on other values)*RST:5
Example:	SOURce:BB:W3GP:BST1:CHANnel12:HSDPa:HSET: CLENgth 8 SOURce:BB:W3GP:BST1:CHANnel12:HSDPa:HSET: ACLength 8
Options:	R&S SMW-K83
Manual operation:	See "Alternative Number of HS-PDSCH Channelization Codes" on page 120

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: ALTModulation <ALTModulation>

Sets the alternative modulation (see Chapter 4.13.9, "Randomly Varying Modulation And Number Of Codes (Type 3i) Settings", on page 118).

Parameters: <pre><altmodulation></altmodulation></pre>	QPSK QAM16 QAM64	
	*RST:	QAM16
Example:		B:W3GPp:BSTation1:CHANnel12:HSDPa: odulation QPSK
Options:	R&S SMW-ł	<83
Manual operation:	See "Alterna	ative HS-PDSCH Modulation" on page 120

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: BCBTti<di>?

Displays the binary channel bits per TTI and per stream.

The value displayed is calculated upon the values sets with the commands:

- [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: MODulation<di>,
- [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe and
- [:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: HSCCode.

Return values:

<bcbtti></bcbtti>	float
Example:	<pre>BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:TYPE MIMO sets the H-set type. BB:W3GP:BST1:CHAN12:HSDP:HSET:BCBT2? queries the binary channel bits per TTI for stream 2. Response: "4800"</pre>
Usage:	Query only
Manual operation:	See "Binary Channel Bits per TTI (Physical Layer) Stream1/2" on page 113

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: BPAYload<di>?

The command queries the payload of the information bit. This value determines the number of transport layer bits sent in each subframe.

Return values: <bpayload></bpayload>	float
	Range: 1 to 5000
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:BPAY2? queries the payload of the information bit. Response: "256"
Usage:	Query only
Manual operation:	See "Information Bit Payload (TB-Size) Stream 1/2" on page 114

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: CLENgth <CLength>

The command queries the number of physical HS-PDSCH data channels assigned to the HS-SCCH.

Parameters:

<clength></clength>	integer Range: *RST:	1 to 15 5
Example:	selects H-S BB:W3GP:E queries the	BST1:CHAN12:HSDP:HSET:CLEN? number of physical HS-PDSCH data channels the HS-SCCH.
Manual operation:	See "Numb on page 110	er of HS-PDSCH Channelization Codes"

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: CRATe<di>?

Queries the resulting coding rate per stream.

The coding rate is calculated as a relation between the "Information Bit Payload" and "Binary Channel Bits per TTI".

Return values:

<crate></crate>	float
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:CRAT2? queries the coding rate of stream 2. Response: "0.658"
Usage:	Query only

Manual operation: See "Coding Rate Stream 1/2" on page 114

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA <Data>

Selects the data source for the transport channel.

Parameters:	
<data></data>	ZERO ONE PATTern PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt
	ZERO ONE Internal 0 and 1 data is used.
	PATTern
	Internal data is used. Use the command [:SOURce <hw>]:BB:</hw>
	W3GPp:BSTation <st>:CHANnel<ch0>:HSDPa:HSET:</ch0></st>
	DATA: PATTern to set the pattern.
	DLISt
	A data list is used. Use the command [:SOURce <hw>]:BB:</hw>
	W3GPp:BSTation <st>:CHANnel<ch0>:HSDPa:HSET:</ch0></st>
	DATA: DSELect to select the data list file.
	*RST: PN9
Example:	BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA PATT selects as the data source for the transport channel BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA:PATT #H3F,8 defines the bit pattern.
Manual operation:	See "Data Source (HS-DSCH)" on page 109

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA: DSELect <DSelect>

The command selects the data list for the DLISt data source selection.

The lists are stored as files with the fixed file extensions $*.dm_iqd$ in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

```
<DSelect> string
```

Setting Base Stations

Example:	BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA DLIS selects the Data Lists data source.
	MMEM:CDIR '/var/user/temp/H-Sets'
	selects the directory for the data lists.
	BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA:DSEL
	'hset_ch11'
	selects the file hset_ch11 as the data source. This file must be
	in the directory /var/user/temp/H-Sets and have the file
	extension *.dm_iqd.

Manual operation: See "Data Source (HS-DSCH)" on page 109

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA: PATTern <Pattern>

Determines the bit pattern for the PATTern selection.

Parameters:				
<pattern></pattern>	64 bits			
	*RST: #H0,1			
Example:	BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA PATT			
	selects as the data source for the H-set			
	BB:W3GP:BST1:CHAN11:HSDP:HSET:DATA:PATT #H3F, 8			
	defines the bit pattern for the H-set.			
Manual operation:	See "Data Source (HS-DSCH)" on page 109			

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ: LENGth <Length>

Sets the number of HARQ processes. This value determines the distribution of the payload in the subframes.

<length></length>	integer				
	Range: 1 to 6				
	*RST: 0				
Example:	SOURce1:BB:BB:W3GPp:BSTation1:CHANnel12:HSDPa: HSET:HARQ:MODE HSET selects H-Set mode. SOURce1:BB:BB:W3GPp:BSTation1:CHANnel12:HSDPa: HSET:HARQ:LENGth? queries the number of HARQ processes. Response:2				
Manual operation:	See "Number of HARQ Processes per Stream" on page 115				

[:SOURce <hw>]: MODE <mo< th=""><th>BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ: ode></ch0></st></th></mo<></hw>	BB:W3GPp:BSTation <st>:CHANnel<ch0>:HSDPa:HSET:HARQ: ode></ch0></st>
Sets the HARQ S	imulation Mode.
Parameters: <mode></mode>	CACK CNACK CACK New data is used for each new TTI. CNACk Enables NACK simulation, i.e. depending on the sequence selected for the parameter Redundancy Version Parameter Sequence packets are retransmitted. *RST: CACK
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:AMOD ON enables advanced mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:HARQ:MODE CNAC sets Constant NACK HARQ Mode.

Manual operation: See "Mode (HARQ Simulation)" on page 116

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: HSCCode <HsCCode>

Sets the channelization code of the HS-SCCH.

Parameters:	
<hsccode></hsccode>	float
	Range: 0 to 127
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:HSCC 10 sets channalization code 10 for the HS-SCCH.

Manual operation: See "Channelization Code HS-SCCH (SF128)" on page 110

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: MODulation<di><Modulation>

Sets the modulation for stream 1 and stream 2 to QPSK, 16QAM or 64QAM.

The modulation 64QAM is available for instruments equipped with option R&S SMW-K83 only.

For HS-SCCH Type 2, the available modulation scheme is QPSK only.

Parameters: <modulation></modulation>	QPSK QAM16 QAM64 *RST: QPSK				
Example:	BB:W3GP:BST1:CHAN12:HSDP:HSET:TYPE MIMO sets MIMO operation mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:MOD1 QAM64 sets the modulation of stream 2 to 64QAM				
Manual operation:	See "HS-PDSCH Modulation Stream1/2" on page 112				

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: NAIBitrate?

Queries the average data rate on the transport layer (Nominal Average Information Bitrate).

Return values:

<naibitrate></naibitrate>	float				
	Range: Increment: *RST:	1 to 5000 0.1 0			
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:NAIB? queries the average data rate on the transport layer. Response:"455"				
Usage:	Query only				
Manual operation:	See "Nomin	al Average Information Bitrate" on page 106			

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: PREDefined <Predefined>

The command selects the H-Set and the modulation according to TS 25.101 Annex A. 7.

<predefined></predefined>	P1QPSK P1QAM16 P2QPSK P2QAM16 P3QPSK P3QAM16 P4QPSK P5QPSK P6QPSK P6QAM16 P7QPSK P8QAM64 P9QAM16QPSK P10QPSK P10QAM16 P11QAM64QAM16 P12QPSK USER *RST: P1QPSK
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:PRED P3QPSK selects H-Set 3 (QPSK).
Manual operation:	See "Predefined H-Set" on page 104

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: PWPattern <PwPattern>

Sets the precoding weight parameter w2 for MIMO precoding.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.1.15, "MIMO in HSPA+", on page 36).

Parameters:

<pwpattern></pwpattern>	string *RST: 0				
Example:	BB:W3GP:BST1:CHAN12:HSDP:HSET:PWP "0,1,3" selects the pattern.				
Manual operation:	See "Precoding Weight Pattern (w2)" on page 108				

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: RVParameter<di><RvParameter>

The parameter is enabled for "HARQ Simulation Mode" set to Constant ACK.

The command sets the Redundancy Version Parameter. This value determines the processing of the Forward Error Correction and Constellation Arrangement (QAM16 and 64QAM modulation), see TS 25.212 4.6.2.

For HS-SCCH Type 2 (less operation), the Redundancy Version Parameter is always 0.

Parameters: <rvparameter></rvparameter>	integer Range: *RST:	0 to 7 0
Example:	selects H-S BB:W3GP:F sets Consta BB:W3GP:F sets the Re BB:W3GP:F enables trai BB:W3GP:F selects HS- BB:W3GP:F	BST1: CHAN12: HSDP: MODE HSET Met mode. BST1: CHAN12: HSDP: HSET: HARQ: MODE CACK ant ACK HARQ Mode. BST1: CHAN12: HSDP: HSET: RVP 7 dundancy Version Parameter to 7. BST1: TDIV ANT1 nsmit diversity BST1: CHAN12: HSDP: HSET: TYPE MIMO SCCH Type 3 (MIMO). BST1: CHAN12: HSDP: HSET: RVP2 4 dundancy Version Parameter of stream 2.
Manual operation:	See "Redur	ndancy Version Stream1/2" on page 116

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: RVPSequence<di><RvpSequence>

The parameter is enabled for "HARQ Simulation Mode" set to Constant NACK.

Enters a sequence of Redundancy Version Parameters per stream. The value of the RV parameter determines the processing of the Forward Error Correction and Constellation Arrangement (16/64QAM modulation), see TS 25.212 4.6.2.

The sequence has a length of maximum 30 values. The sequence length determines the maximum number of retransmissions. New data is used after reaching the end of the sequence.

For HS-SCCH Type 2 (less operation), the Redundancy Version Parameter Sequence is a read-only parameter.

Parameters: <rvpsequence></rvpsequence>	string
Example:	<pre>BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:AMOD ON enables advanced mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:HARQ:MODE CNAC sets Constant NACK HARQ Mode. BB:W3GP:BST1:TDIV ANT1 enables transmit diversity BB:W3GP:BST1:CHAN12:HSDP:HSET:TYPE MIMO selects HS-SCCH Type 3 (MIMO). BB:W3GP:BST1:CHAN12:HSDP:HSET:RVPS2 '0,1,3,2,0,1,2,3' sets the Redundancy Version Parameter sequence of stream 2.</pre>
Example:	BB:W3GP:BST1:CHAN12:HSDP:HSET:TYPE LOP selects HS-SCCH Type 2 (less operation). BB:W3GP:BST1:CHAN12:HSDP:HSET:RVPS? queries the Redundancy Version Parameter sequence. Response: 0,3,4
Manual operation:	See "Redundancy Version Sequence Stream 1/2" on page 117

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: RVSTate <RvState>

Enables/disables the random variation of the modulation and number of codes (see Chapter 4.13.9, "Randomly Varying Modulation And Number Of Codes (Type 3i) Settings", on page 118).

Ρ	a	a	m	et	te	rs	i

<rvstate></rvstate>	0 1 OFF ON	
	*RST:	OFF
Example:	SOURce:BB ON	:W3GPp:BST1:CHAN12:HSDPa:HSET:RVSTate
Options:	R&S SMW-K83	
Manual operation:	See "Rando on page 120	mly Varying Modulation And Number Of Codes"

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SEED <Seed>

Sets the seed for the random process deciding between the four option (see Chapter 4.13.9, "Randomly Varying Modulation And Number Of Codes (Type 3i) Settings", on page 118).

Parameters:

<seed></seed>	integer	
	Range: *RST:	0 to 65535 0 for path A, 1 for path B
Example:	SOURce:BE 5	:W3GPp:BST1:CHANnel12:HSDPa:HSET:SEED
Options:	R&S SMW-I	K83
Manual operation:	See "Rando	m Seed" on page 120

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: S64Qam <S64qam>

Enables/disables UE support of 64QAM.

This command is enabled only for HS-SCCH Type 1 (normal operation) and 16QAM modulation.

In case this parameter is disabled, i.e. the UE does not support 64QAM, the xccs,7 bit is used for channelization information.

Parameters:

<s64qam></s64qam>	ON OFF
	*RST: OFF
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:TYPE NORM selects HS-SCCH Type 1 (normal operation). BB:W3GP:BST1:CHAN12:HSDP:HSET:MOD QAM16 sets 16QAM modulation.
	BB:W3GP:BST1:CHAN12:HSDP:HSET:S64Q ON
	enables UE to support 64QAM
Manual operation:	See "UE Supports 64QAM" on page 113

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SCCode <SCcode>

Sets the channelization code of the first HS-PDSCH channel in the H-Set. The channelization codes of the rest of the HS-PDSCHs in this H-Set are set automatically.

Note: To let the instrument generate a signal equal to the one generated by an instrument equipped with an older firmware, set the same Channelization Codes as the codes used for your physical channels.

Parameters:

<sccode></sccode>	integer	
	Range: *RST:	1 to 15 8
Example:	selects H-S BB:W3GP:E	BST1:CHAN12:HSDP:MODE HSET et mode. BST1:CHAN12:HSDP:HSET:SCC 10 Elization code of the first HS-PDSCH.
Manual operation:	See "Start C on page 11	Channelization Code HS-PDSCH (SF16)" 0

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SLENgth?

Queries the suggested ARB sequence length.

Return values: <slength></slength>	integer Range: 1 to max
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:HSDPa:HSET:SLENgth:ADJust on page 403</ch0></st></hw></pre>
Usage:	Query only
Manual operation:	See "Advanced Mode (requires ARB)" on page 105

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SLENgth:ADJust

Sets the ARB sequence length to the suggested value.

Example: BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:AMOD ON enables advanced mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:SLEN? queries the suggested ABR sequence length. Response: 21 BB:W3GP:SLEN? queries the current ABR sequence length. Response: 12 BB:W3GP:BST1:CHAN12:HSDP:HSET:SLEN:ADJ sets the ARB sequence length to the suggested value. BB:W3GP:SLEN? queries the current ABR sequence length. Response: 21 Usage: Event Manual operation: See "Adjust" on page 106

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: SPATtern<di>?

Queries the distribution of packets over time. A "-" indicates no packet

Return values: <spattern></spattern>	string
Example:	<pre>BB:W3GP:BST1:CHAN15:HSDP:TTID 3 sets the TTI BB:W3GP:BST1:CHAN12:HSDP:HSET:HARQ:LENG 2 sets the number of HARQ processes BB:W3GP:BST1:CHAN12:HSDP:HSET:SPAT1? queries the signaling pattern for stream 1 Response: 0,-,-1,-,-</pre>
Usage:	Query only
Manual operation:	See "Signaling Pattern Stream1/2" on page 115

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: STAPattern <StaPattern>

Enables/disables a temporal deactivation of Stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of "1" (enables Stream 2 for that TTI) and "-" (disabled Stream 2 for that TTI).

<stapattern></stapattern>	string	
	*RST:	1

Setting Base Stations

Example: BB:W3GP:BST1:CHAN12:HSDP:HSET:STAP "11-" selects the pattern.

Manual operation: See "Stream 2 Active Pattern" on page 108

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TPOWer <Tpower>

Sets the total power of the HS-PDSCH channels in the H-Set.

The individual power levels of the HS-PDSCHs are calculated automatically and can be queried with the command [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>:POWer.

Parameters:

<tpower></tpower>	float
	The min/max values depend on the number of HS-PDSCH channelization codes ([:SOURce <hw>]:BB:W3GPp: BSTation<st>:CHANnel<ch0>:HSDPa:HSET:CLENgth) and are calculated as follow: min = -80 dB + 10*log₁₀(NumberOfHS-PDSCHChannelizationC- odes) max = 0 dB + 10*log₁₀(NumberOfHS-PDSCHChannelizationCo- des)</ch0></st></hw>
	Range:dynamic to dynamicIncrement:0.01*RST:-13.01
Example:	:SOURce:BB:W3GPp:BST1:CHAN12:HSDPa:MODE HSET :SOURce:BB:W3GPp:BST1:CHAN12:HSDPa:HSET: CLENgth? Response: 5 :SOURce:BB:W3GPp:BST1:CHAN13:POWer -10 :SOURce:BB:W3GPp:BST1:CHAN12:HSDPa:HSET:TPOWer? Response: -3.01029995663981 dB :SOURce:BB:W3GPp:BST1:CHAN12:HSDPa:HSET:TPOWer -5
	-5 :SOURce:BB:W3GPp:BST1:CHAN13:POWer? Response: -11.9897000433602 dB
Manual operation:	See "Total HS-PDSCH Power" on page 111

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: INDex<di><Index>

Selects the Index ki for the corresponding table and stream, as described in in 3GPP TS 25.321.

Parameters:

<Index>

integer Range: 0 to 62

Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET
	selects H-Set mode.
	BB:W3GP:BST1:CHAN12:HSDP:HSET:TBS:TABL2 TAB0
	selects Table 0 for stream 2.
	BB:W3GP:BST1:CHAN12:HSDP:HSET:TBS:IND2 25
	sets the Index ki
Manual operation:	See "Transport Block Size Index Stream1/2" on page 113

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: REFerence <Reference>

While working in less operation mode, this command is signaled instead of the command BB:W3GP:BST:CHAN:HSDP:HSET:TBS:IND.

Parameters:

<reference></reference>	integer	
	Range:	0 to 3
	*RST:	0
Example:	BB:W3GP:E	ST1:CHAN12:HSDP:MODE HSET
	selects H-S	et mode.
	BB:W3GP:E	ST1:CHAN12:HSDP:HSET:TYPE LOP
	selects less	operation mode.
	BB:W3GP:E	ST1:CHAN12:HSDP:HSET:TBS:TABL2 TAB0
	selects Tab	le 0 for stream 2.
	BB:W3GP:E	ST1:CHAN12:HSDP:HSET:TBS:REF 2
	sets the refe	erence.

Manual operation: See "Transport Block Size Reference Stream1/2" on page 113

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS: TABLe<di><Table>

Selects Table 0 or Table 1 as described in in 3GPP TS 25.321.

For HS-PDSCH Modulation set to 64QAM, only Table 1 is available.

<table></table>	TAB0 TAB1	
	*RST: TAB0	
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:TBS:TABL2 TAB0 selects Table 0 for stream 2.	
Manual operation:	See "Transport Block Size Table Stream1/2" on page 113	

[:SOURce <hw>]:BB <type></type></hw>	:W3GPp:BSTation <st>:CHANnel<ch0>:HSDPa:HSET:TYPE</ch0></st>		
Sets the HS-SCCH ty	/pe.		
Parameters:			
<type></type>	NORMal LOPeration MIMO		
	NORMal		
	Normal operation mode.		
	LOPeration		
	HS-SCCH less operation mode.		
	МІМО		
	HS-SCCH Type 3 mode is defined for MIMO operation. Enabling this operation mode, enables the MIMO parameters [
	SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:</ch0></st></hw>		
	<pre>HSDPa:MIMO:CVPB<di>, [:SOURce<hw>]:BB:W3GPp:</hw></di></pre>		
	BSTation <st>:CHANnel<ch0>:HSDPa:MIMO:</ch0></st>		
	MODulation <di>, [:SOURce<hw>]:BB:W3GPp:</hw></di>		
	BSTation <st>:CHANnel<ch0>:HSDPa:MIMO:PWPattern</ch0></st>		
	and [:SOURce <hw>]:BB:W3GPp:BSTation<st>:</st></hw>		
	CHANnel <ch0>:HSDPa:MIMO:STAPattern and all Stream 2</ch0>		
	parameters.		
	*RST: NORMal		
Example:	BB:W3GP:BST1:TDIV ANT1 enables transmit diversity and antenna 1. BB:W3GP:BST1:CHAN12:HSDP:HSET:TYPE MIMO sets MIMO operation mode.		
Manual operation:	See "HS-SCCH Type" on page 106		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: UECategory?

Queries the UE category number.

Return values:

<uecategory></uecategory>	integer Range: 0 to 5000
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:PRED P3QPSK selects H-Set 3 (QPSK). BB:W3GP:BST1:CHAN12:HSDP:HSET:UEC? queries the UE Category. Response: 5
Usage:	Query only
Manual operation:	See "UE Category" on page 106

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UEID <Ueid>

The command sets the UE identity which is the HS-DSCH Radio Network Identifier (H-RNTI) defined in 3GPP TS 25.331: "Radio Resource Control (RRC); Protocol Specification".

Parameters:

<ueid></ueid>	integer		
	Range: *RST:	0 to 65535 0	
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE HSET selects H-Set mode. BB:W3GP:BST1:CHAN12:HSDP:HSET:UEID 256 sets the UE identity.		
Manual operation:	See "UEID	(H-RNTI)" on page 110	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET: VIBSize<di><VibSize>

Sets the size of the Virtual IR Buffer (Number of SMLs per HARQ-Process) per stream.

Parameters:

<vibsize></vibsize>	integer Range: Increment: *RST:		304000
Example:	SOURCe1:E HSET:TYPE SOURCe1:E HSET:VIBS Response : SOURCe1:E HSET:VIBS	BB:W3GP MIMO BB:W3GP Size1? 9600 BB:W3GP Size1 3 BB:W3GP	p:BSTation1:CHANnel12:HSDPa:
Manual operation:	See "Virtual on page 114		er Size (per HARQ Process) Stream1/2"

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: CVPB<di><Cvpb>

The command switches the order of the constellation points of the 16QAM and 64QAM mapping.

The re-arrengement is done according to 3GPP TS25.212.

Parameters:		
<cvpb></cvpb>	0 1 2 3	
	Range: *RST:	0 to 3 0
Example:	BB:W3GP:BST1:CHAN12:HSDP:MIMO:CVPB2 1 selects interchange of MSBs with LSBs for stream 2.	
Manual operation:	See "Constellation Version Parameter b Stream 1/2 - BS" on page 102	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: MODulation<di><Modulation>

Sets the modulation for stream 1 and stream 2 to QPSK, 16QAM or 64QAM.

The modulation 64QAM is available for instruments equipped with option R&S SMW-K83 only.

<modulation></modulation>	QPSK QAM16 QAM64		
	*RST:	HSQP	
Example:	BB:W3GP:BST1:CHAN12:HSDP:MIMO:MOD1 HS64Q sets the modulation of stream 2 to 64QAM		
Manual operation:	See "Modula	ation Stream 1/2 (HS-PDSCH MIMO)" on page 102	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: PWPattern <PwPattern>

Sets the precoding weight parameter w2 for MIMO precoding.

The values of the weight parameters w1, w3 and w4 are calculated based on the value for w2 (see Chapter 3.1.15, "MIMO in HSPA+", on page 36).

Parameters:

<pwpattern></pwpattern>	string *RST: 0
Example:	BB:W3GP:BST1:CHAN12:HSDP:MIMO:PWP "0,1,3 selects the pattern.
Manual operation:	See "Precoding Weight Pattern (w2)" on page 102

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO: STAPattern <StaPattern>

Enables/disables a temporal deactivation of Stream 2 per TTI in form of sending pattern.

The stream 2 sending pattern is a sequence of max 16 values of "1" (enables Stream 2 for that TTI) and "-" (disabled Stream 2 for that TTI).

Parameters: <stapattern></stapattern>	string *RST: 1
Example:	BB:W3GP:BST1:CHAN12:HSDP:MIMO:STAP "11-" selects the pattern.
Manual operation:	See "Stream 2 Active Pattern" on page 102

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MODE <Mode>

The command selects the HSDPA mode.

Parameters:				
<mode></mode>	CONTinuous PSF0 PSF1 PSF2 PSF3 PSF4 HSET			
	CONTinuous The high speed channel is generated continuously. This mode is defined in test model 5.			
	PSFx			
	The high speed channel is generated in packet mode. The start of the channel is set by selecting the subframe in which the first packet is sent.			
	HSET The high speed channels are preset according to TS 25.1401 Annex A.7, H-Set.			
	*RST: CONTinuous			
Example:	BB:W3GP:BST1:CHAN12:HSDP:MODE PSF1 selects packet mode for channel 12. The first packet is sent in packet subframe 1 (PSF1).			
Manual operation:	See "HSDPA Mode" on page 100			

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:TTIDistance <TtiDistance>

The command selects the distance between two packets in HSDPA packet mode. The distance is set in number of sub-frames (3 slots = 2 ms). An "Inter TTI Distance" of 1 means continuous generation.

<ttidistance></ttidistance>	integer		
	Range: *RST:	1 to 16 5	
Example:	BB:W3GP:BST1:CHAN12:HSDP:TTID 2 selects an Inter TTI Distance of 2 subframes.		
Manual operation:	See "Inter TTI Distance (H-Set)" on page 100		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:POWer <Power>

Sets the channel power relative to the powers of the other channels. This setting also determines the starting power of the channel for Misuse TPC, Dynamic Power Control and the power control sequence simulation of OCNS mode 3i channels.

With the command SOURCe:BB:W3GPp:POWer:ADJust, the power of all the activated channels is adapted so that the total power corresponds to 0 dB. This will not change the power ratio among the individual channels.

Parameters:

<power></power>	float		
	Range: Increment: *RST:	-80 to 0 0.01 depends on channel	
Example:	BB:W3GP:BST2:CHAN12:POW -10dB sets the channel power of channel 12 of base station 2 to -10 dB relative to the power of the other channels.		
Manual operation:	See "Power" on page 86		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SFORmat <SFormat>

The command sets the slot format of the selected channel. The value range depends on the selected channel.

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters will be adapted as necessary.

In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters:

<sformat></sformat>	integer		
	Range: *RST:	0 to dynamic 0	
Example:	BB:W3GP:BST2:CHAN12:SFOR 8 selects slot format 8 for channel 12 of base station 2.		
Manual operation:	See "Slot Format" on page 86		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe <SRate>

The command sets the symbol rate of the selected channel. The value range depends on the selected channel and the selected slot format.

The slot format determines the symbol rate (and thus the range of values for the channelization code), the TFCI state and the pilot length. If the value of any one of the four parameters is changed, all the other parameters will be adapted as necessary. In the case of enhanced channels with active channel coding, the selected channel coding also affects the slot format and thus the remaining parameters. If these parameters are changed, the channel coding type is set to user.

Parameters: <srate></srate>	D7K5 D15K D30K D60K D120k D240k D480k D960k *RST: DPCHs D30K; CHAN110 D15K; DL-DPCCH (CHAN11) D7K5;	
Example:	BB:W3GP:BST2:CHAN12:SRAT D120K sets the symbol rate for channel 12 of base station 2 to 120 ksps.	
Manual operation:	See "Symbol Rate" on page 86	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:STATe <State>

The command activates the selected channel.

Parameters:			
<state></state>	ON OFF		
	*RST: 0		
Example:	BB:W3GP:BST2:CHAN12:STAT OFF deactivates channel 12 of base station 2.		
Manual operation:	See "Channel State" on page 88		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TOFFset <TOffset>

Sets the timing offset.

Parameters: <TOffset> integer <TOffset> For F-DPCH channels, the value range is 0 to 9. *RST: 0 Example: BB:W3GP:BST2:CHAN12:TOFF 20 defines a frame shift relative to the scrambling code sequence of 20*256 chips. Manual operation: See "Timing Offset" on page 87

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TYPE <Type>

Sets the channel type.

Parameters:

<type></type>	PCPich SCPich PSCH SSCH PCCPch SCCPch PICH APAich AICH PDSCh DPCCh DPCH HSSCch HSQPsk HSQam HS64Qam HSMimo EAGCh ERGCh EHICh FDPCh HS16Qam	
	The channels types of CHANnel0 to CHANnel8 are predefined. For the remaining channels, you can select a channel type from the relevant standard channels and the high-speed channels	
Example:	SOURce1:BB:W3GPp:BSTation1:CHANnel12:TYPE HSQPsk selects channel type HS-PDS, QPSK for channel 12	
Manual operation:	See "Channel Type" on page 85	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: IFCoding <IfCoding>

Enables/disables the information coding.

Parameters:			
<ifcoding></ifcoding>	0 1 OFF ON		
	0 OFF		
	corresponds to a standard operation; no coding is performed and the data is sent uncoded.		
	1 ON		
	you can configure the way the data is coded		
	*RST: 0		
Example:	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:IFCoding 1		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTIEdch 2		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTICount 2		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTI0:UEID 100		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTI0:AGVIndex 20		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTI0:AGSCope PER		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTI1:UEID 10000		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTI1:AGVIndex 1		
	SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTI1:AGSCope ALL		
Manual operation:	See "E-AGCH Information Field Coding" on page 147		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTI<di0>:AGSCope <AGScope>

Sets the scope of the selected grant. According to the TS 25.321, the impact of each grant on the UE depends on this parameter.

For E-DCH TTI = 10ms, the absolute grant scope is always ALL (All HARQ Processes).

Parameters:

Manual operation:	See "Absolute Grant Scope" on page 148
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 413</ch0></st></hw></pre>
<agscope></agscope>	ALL PER

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTI<di0>:AGVIndex <AgvIndex>

Sets the Index for the selected TTI. According to the TS 25.212 (4.10.1A.1), there is a cross-reference between the grant's index and the grant value.

Parameters:

<agvindex></agvindex>	integer Range:	0 to 31
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 413</ch0></st></hw></pre>	
Manual operation:	See "Absolu	te Grant Value Index" on page 148

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTI<di0>:UEID <Ueid>

Sets the UE Id for the selected TTI.

Parameters: <ueid></ueid>	integer	
	Range:	0 to 65535
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 413</ch0></st></hw></pre>	
Manual operation:	See "UEID (A-GCH)" on page 148	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTICount <TtiCount>

Sets the number of configurable TTIs.

Parameters:	
<tticount></tticount>	integer
	Range: 1 to 10
Example:	SOURce1:BB:W3GPp:BSTation1:CHANnel9:TYPE EAGCh SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EAGCh:TTICount 5
Manual operation:	See "Number of Configurable TTIs" on page 147

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh: TTIEdch <Ttiedch>

Sets the processing duration.

Parameters:

<ttiedch></ttiedch>	2ms 10ms	
	*RST: 2ms	
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding on page 413</ch0></st></hw></pre>	
Manual operation:	See "E-DCH TTI" on page 147	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: CTYPe <CType>

Sets the cell type.

<ctype></ctype>	SERVing NOSERVing *RST: SERVing
Example:	<pre>SOURce1:BB:W3GPp:BSTation1:CHANnel9:TYPE EHICh SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:CTYPe SERVing SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:TTIEdch 2ms SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:SSINdex 2 SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:DTAU 2 SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:ETAU? Response: 5 SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:RGPAttern "+-+-" SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:CTYPe NOSERVing SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:CTYPe NOSERVing SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:CTYPe NOSERVing SOURce1:BB:W3GPp:BSTation1:CHANnel9:HSUPa: EHICh:CTYPe NOSERVing</pre>

Manual operation: See "Type of Cell" on page 149

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:DTAU <Dtau>

Sets the offset of the downlink dedicated offset channels.

Suffix: <ch0></ch0>	9138	
Parameters: <dtau></dtau>	integer Range: *RST:	0 to 149 0
Example:	<pre>see [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EHICh:CTYPe on page 415</ch0></st></hw></pre>	
Manual operation:	See "Tau DPCH" on page 150	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: ETAU?

Queries the offset of the P-CCPCH frame boundary.

Return values: <etau></etau>	integer Range: 0 to 149	
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EHICh:CTYPe on page 415</ch0></st></hw></pre>	
Usage:	Query only	
Manual operation:	See "Tau E-RGCH/E-HICH" on page 150	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: RGPAttern <RgPattern>

Sets the bit pattern for the ACK/NACK field.

<rgpattern></rgpattern>	<32-bit long pattern> "+" (ACK) and "0" (no signal) For the non serving cell		
	"+" (ACK) and "-" (NACK) For the serving cell		
	*RST: +		
Example:	<pre>see [:SOURce<hw>]:BB:W3GPp:BSTation<st>: CHANnel<ch0>[:HSUPa]:EHICh:CTYPe on page 415</ch0></st></hw></pre>		

Manual operation: See "ACK/NACK Pattern" on page 150

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: SSINdex <SsIndex>

Sets the value that identifies the user equipment. The values are defined in TS 25.211.

Suffix: <ch0></ch0>	9138	
Parameters: <ssindex></ssindex>	integer Range: *RST:	0 to 39 0
Example:	-	<pre>Rce<hw>]:BB:W3GPp:BSTation<st>: ch0>[:HSUPa]:EHICh:CTYPe on page 415</st></hw></pre>
Manual operation:	See <mark>"Signa</mark> on page 15	ture Hopping Pattern Index – HSUPA BS" 0

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh: TTIEdch <Ttiedch>

Sets the processing duration.

Parameters:

Example: See [:SOURce <hw>]:BB:W3GPp:BSTation<st CHANnel<ch0>[:HSUPa]:EHICh:CTYPe on page</ch0></st </hw>		
*RST: 2ms		
<ttiedch> 2ms 10ms</ttiedch>	2ms 10ms	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: CTYPe <CType>

The command selects the cell type.

<ctype></ctype>	SERVing NOSERVing		
	*RST:	SERVing	
Example:		<pre>I3GP:BST1:CHAN9:HSUP:ERGC:CTYP SERV serving cell type.</pre>	
Manual operation:	See "Type o	of Cell" on page 149	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: DTAU <Dtau>

The command sets the offset of the downlink dedicated offset channels.

Parameters: <dtau></dtau>	0	0 to 149
	*RST:	0
Example:		N3GP:BST1:CHAN12:HSUP:ERGC:DTAU 5 set of the downlink dedicated offset channels.
Manual operation:	See "Tau D	PCH" on page 150

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: ETAU?

The command queries the offset of the P-CCPCH frame boundary.

Return values:

<etau></etau>	integer	
	Range:	0 to 149
Example:		GGP:BST1:CHAN12:HSUP:ERGC:ETAU?
Usage:	Query only	
Manual operation:	See "Tau E-	RGCH/E-HICH" on page 150

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: RGPAttern <RgPattern>

The command sets the bit pattern for the Relative Grant Pattern field.

Parameters: <rgpattern></rgpattern>	string
Example:	SOUR:BB:W3GP:BST1:CHAN10:HSUP:ERGC:RGPA "-" sets the bit pattern to "-" (Down).
Manual operation:	See "Relative Grant Pattern" on page 150

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: SSINdex <SsIndex>

The command sets the value that identifies the user equipment. The values are defined in TS 25.211.

Parameters: <ssindex></ssindex>	integer Range: *RST:	0 to 39 0
Example:		<pre>I3GP:BST1:CHAN9:HSUP:ERGC:SSIN 0 ue to identify the user equipment.</pre>
Manual operation:	See "Signat on page 150	ure Hopping Pattern Index – HSUPA BS")

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh: TTIEdch <Ttiedch>

The command sets processing duration.

Parameters:		
<ttiedch></ttiedch>	2ms 10ms	
	*RST:	2ms
Example:		N3GP:BST1:CHAN10:HSUP:ERGC:TTIE 2ms cessing duration to 2 ms.
Manual operation:	See "E-DCH	HTTI" on page 149

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:DLFStructure <DlfStructure>

The command selects the frame structure. The frame structure determines the transmission of TPC and pilot field in the transmission gaps.

i aramotoror	
<difstructure></difstructure>	A B
	Α
	Type A, the pilot field is sent in the last slot of each transmission gap.
	В
	Type B, the pilot field is sent in the last slot of each transmission gap. The first TPC field of the transmission gap is sent in addition.
	*RST: A
Example:	BB:W3GP:BST2:CMOD:DLFS A selects frame structure of type A.
Manual operation:	See "DL Frame Structure - BS" on page 95

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:METHod <Method>

The command selects compressed mode method.

Parameters:	
<method></method>	PUNCturing HLSCheduling SF2
	PUNCturing
	The data is compressed by reducing error protection.
	HLSCheduling
	The data is compressed by stopping the transmission of the data stream during the transmission gap.
	SF2
	The data is compressed by halving the spreading factor.
	*RST: SF2
Example:	BB:W3GP:BST2:CMOD:METH HLSC selects compressed mode method High Layer Scheduling.
Manual operation:	See "Compressed Mode Method - BS" on page 95

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGD <Tgd>

Sets the transmission gap distances.

Parameters: <tgd></tgd>	integer	
	Range: *RST:	3 to 100 15
Example:		BST2:CMOD:PATT2:TGD 7 ission gap distance of pattern 2 to 7 slots.
Manual operation:	See "Distan	ce" on page 97

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGL<di><Tgl>

Sets the transmission gap lengths.

Parameters:

<tgl></tgl>	integer Range: *RST:	3 to 14 3
Example:		BST2:CMOD:PATT2:TGL1 4 ission gap length of gap 1 of pattern 2 to 4 slots.
Manual operation:	See "Gap L	en:" on page 97

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGPL <Tgpl>

The command sets the transmission gap pattern lengths. Setting 0 is available only for pattern 2.

The transmission gap pattern length of the user equipment with the same suffix as the selected base station is set to the same value.

Parameters:		
<tgpl></tgpl>	integer	
	Range: *RST:	0 to 100 2
Example:		ST2:CMOD:PATT2:TGPL 7 ssion gap pattern length of pattern 2 to 7 frames.
Manual operation:	See "Patterr	Len:" on page 98

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGSN <Tgsn>

Sets the transmission gap slot number of pattern 1.

Parameters:		
<tgsn></tgsn>	integer	
	Range: *RST:	0 to 14 7
Example:		BST2:CMOD:PATT:TGSN 4 mber of pattern 1 to slot 4.
Manual operation:	See "At Slo	t:" on page 97

[:SOURce<hw>]:BB:W3GPp:BSTation<st>|MSTation<st>:CMODe:POFFset <POffset>

The command sets the power offset for mode USER.

Parameters	5:
------------	----

<poffset></poffset>	float	
	Range: Increment: *RST:	0 dB to 10 dB 0.01 dB 0 dB
Example:	sets the power the sets the power sets the power sets the power sets the set of the set	AST2 UE2:CMOD:POFF 4 wer offset value to 4 dB. AST2 UE2:CMOD:POM USER ver offset mode USER
Manual operation:	See "Power	Offset" on page 96

[:SOURce<hw>]:BB:W3GPp:BSTation<st>|MSTation<st>:CMODe:POMode <PoMode>

The command selects the power offset mode.

Parameters:	
<pomode></pomode>	AUTO USER
	AUTO
	The power offset is obtained by pilot bit ratio as follows:
	Number of pilots bits of non-compressed slots / Number of pilot
	bits by compressed slots.
	USER
	The power offset is defined by command [:SOURce <hw>]:BB:</hw>
	W3GPp:BSTation <st> MSTation<st>:CMODe:POFFset.</st></st>
	*RST: AUTO
Example:	BB:W3GP:BST2 UE2:CMOD:POFF 4
-	sets the power offset value to 4 dB.
	BB:W3GP:BST2 UE2:CMOD:POM USER
	selects power offset mode USER.
Manual operation:	See "Power Offset Mode" on page 96

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:CMODe:STATe <State>

The command activates/deactivates the compressed mode.

Parameters:		
<state></state>	ON OFF	
	*RST: 0	
Example:	BB:W3GP:BST2:CMOD:STAT ON	
	activates compressed mode for base station 2.	
Manual operation:	See "Compressed Mode State" on page 94	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:DCONflict:RESolve

The command resolves existing domain conflicts by modifying the Channelization Codes of the affected channels.

Example:	BB:W3GP:BST2:DCON:STAT? queries whether a code domain conflict exists for base station 2. Response: 1 there is a conflict. BB:W3GP:BST2:DCON:RES resolves the code domain error by modifying the Channelization codes of the affected channels.
Usage:	Event
Manual operation:	See "Domain Conflict, Resolving Domain Conflicts" on page 89

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:DCONflict[:STATe]?

The command queries whether there is (response 1) or is not (response 0) a conflict (overlap) in the hierarchically-structured channelization codes. The cause of a possible domain conflict can be ascertained by manual operation in the "BS > Code Domain" dialog.

Return values:

<state></state>	0 1 OFF ON
	*RST: 0
Example:	BB:W3GP:BST2:DCON:STAT? queries whether a code domain conflict exists for base station 2. Response: 0 there is no conflict.
Usage:	Query only
Manual operation:	See "Domain Conflict, Resolving Domain Conflicts" on page 89

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:OLTDiversity <OltDiversity>

Activates/deactivates open loop transmit diversity.

The antenna whose signal is to be simulated is selected with the command [: SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVersity.

Parameters:

<oltdiversity></oltdiversity>	ON OFF *RST:	OFF
Example:	calculates a two-antenna BB:W3GP:B	ANT2 and applies the output signal for antenna 2 of one a system. AST2:OLTD ON en loop transmit diversity.
Manual operation:	See "Open I	Loop Transmit Diversity" on page 81

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:PINDicator:COUNt <Count>

The command sets the number of page indicators (PI) per frame in the page indicator channel (PICH).

Parameters: <count></count>	D18 D36 D72 D144 *RST: D18
Example:	BB:W3GP:BST2:PIND:COUN D36 sets the number of page indicators (PI) per frame in the page indicator channel (PICH) to 36.
Manual operation:	See "Page Indicators/Frame" on page 80

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCODe <SCode>

Sets the identification for the base station. This value is simultaneously the initial value of the scrambling code generator.

Parameters:

<scode></scode>	integer		
	Range: *RST:	#H0 to #H5FFF #H0	
Example:		BST2:SCOD #H1FFF ambling code	
Manual operation:	See "Scran	nbling Code" on page 80	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCODe:STATe <State>

The command makes it possible to deactivate base station scrambling for test purposes.

Parameters:

<state></state>	ON OFF	
	*RST:	ON
Example:		SST2:SCOD:STAT OFF scrambling for base station 2.
Manual operation:	See "Scrambling Code" on page 80	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SCPich:PREFerence[:STATe] <State>

The command activates or deactivates the use of S-CPICH as reference phase.

Parameters: <state></state>	ON OFF *RST: 0	
Example:	BB:W3GP:BST2:SCP:PREF ON activates the use of S-CPICH as reference phase for base sta- tion 2.	
Manual operation:	See "S-CPICH as Phase Reference" on page 81	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:SSCG?

The command queries the secondary synchronization code group. This parameter is specified in the table defined by the 3GPP standard "Allocation of SSCs for secondary SCH". This table assigns a specific spreading code to the synchronization code symbol for every slot in the frame. The value is calculated from the scrambling code.

Return values:

<Sscg>

integer Range: 0 to 63

Example:	BB:W3GP:BST2:SSCG? queries the 2nd search code group for base station 2. Response: 24 the base station is part of second search group 24.
Usage:	Query only
Manual operation:	See "2 nd Search Code Group" on page 80

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:STATe <State>

Activates and deactivates the specified base station.

Parameters: <state></state>	0 1 OFF ON		
	*RST:	1 (BSTation1), 0 (all other)	
Example:	BB:W3GP:BST2:STAT OFF deactivates base station 2.		
Manual operation:	See "Select Basestation/User Equipment" on page 69		

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDELay <Tdelay>

The command sets the time shift of the selected base station compared to base station 1 in chips.

Parameters:

<tdelay></tdelay>	integer Range: *RST:	0 chips to 38400 chips 0 chips
Example:	BB:W3GP:BST2:TDEL 256 shifts base station 2 by 256 chips compared to base station	
Manual operation:	See "Time Delay" on page 81	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:TDIVersity <TDiversity>

Selects the antenna and the antenna configuration to be simulated.

To simulate transmit diversity, a two-antenna system has to be selected and Open Loop Transmit Diversity has to be activated (command BB:W3GP:BST:OLTD ON).

<tdiversity></tdiversity>	SANT ANT1 ANT2 OFF		
	SANT = single-antenna system		
	*RST: SANT		
Example:	BB:W3GP:BST2:TDIV ANT2 the signal of antenna 2 of one two-antenna system is simulated.		
Manual operation:	See "Diversity / MIMO" on page 81		

8.8 Enhanced Channels of Base Station 1

The SOURCe: BB: W3GPp: BSTation: ENHanced subsystem contains the commands for setting the enhanced channels of base station 1. The commands of this system only take effect when the 3GPP FDD standard is activated, the downlink transmission direction is selected, base station 1 is enabled and enhanced channels are activated:

SOURce:BB:W3GPp:STATE ON SOURce:BB:W3GPp:LINK DOWN SOURce:BB:W3GPp:BST1:STATE ON SOURce:BB:W3GPp:BST:ENHanced:CHANnel<11...13>:DPCH:STATE ON

or

SOURce:BB:W3GPp:BST:ENHanced:PCCPch:STATe ON

BSTation<st>

The numeric suffix to BSTation determines the base station. Enhanced channels are enabled for base station 1 only.

CHANnel<ch0>

The value range is CHANnel<11|12|13> for enhanced DPCHs and CHANnel<4> for P-CCPCH.

TCHannel<di>

The transport channel designations for remote control are TCHannel0 for DCCH, TCHannel1 to TCHannel6 for DTCH1 to DTCH6.

8.8.1 General Settings

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:STATe <State>

The command switches the selected channel to the enhanced state.

Parameters:			
<state></state>	ON OFF		
	*RST: 0		
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:STAT ON switches DPCH 13 to Enhanced State.		
Manual operation:	See "Enhanced State" on page 124		

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:STATe <State>

The command activates or deactivates the enhanced state of the P-CCPCH (BCH).

Parameters:

<state></state>	ON OFF		
	*RST:	OFF	
Example:	BB:W3GP:BST:ENH:PCCP:STAT ON switches the P-CCPCH to Enhanced State.		
Manual operation:	See "State (Enhanced P-CCPCH)" on page 122	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:ENHanced:PCPich:PATTern <Pattern>

Sets the P-CPICh pattern (channel 0).

Parameters: <pattern></pattern>	ANT1 ANT	-2
	*RST:	ANT1
Example:	BB:W3GP:BST2:ENH:PCP:PATT AND sets the P-CPICH Pattern to Antenna 2	
Manual operation:	See "P-CPICH Pattern " on page 121	

8.8.2 Channel Coding

[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing:USER:</hw>	
DELete	428
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:</ch0></hw>	
BPFRame?	428
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:</ch0></hw>	
SFORmat	429
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:</ch0></hw>	
SRATe?	429
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:STATe.</ch0></hw>	430
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:TYPE</ch0></hw>	430
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing:USER:</hw>	
CATalog?	432
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:</ch0></hw>	
USER:LOAD	432
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:</ch0></hw>	
USER:STORe	
[:SOURce < hw >]:BB:W3GPp:BSTation:ENHanced:CHANnel < ch0 > :DPCH:INTerleaver2	433
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:CRCSize</di0>	433
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
	434
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:DATA:DSELect</di0>	434

[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:DATA:PATTern</di0>	435
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:DTX</di0>	435
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:EPRotection</di0>	435
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:INTerleaver</di0>	436
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:RMATtribute</di0>	436
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:STATe</di0>	437
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:TBCount</di0>	437
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:TBSize</di0>	437
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:</ch0></hw>	
TCHannel <di0>:TTINterval</di0>	438
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:INTerleaver<di></di></hw>	438
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:STATe</hw>	438
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:TYPE?</hw>	438

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing: USER:DELete <Filename>

Deletes the specified files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

<filename></filename>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:BST:ENH:CHAN:DPCH:CCOD:USER:DEL 'user_cc1' deletes the specified file with user coding.</pre>
Usage:	Setting only

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:BPFRame?

Queries the number of data bits in the DPDCH component of the frame at the physical layer.

Return values: <bpframe></bpframe>	integer Range:	30 to 20000
	*RST:	510
Example:	queries the Response:	ST:ENH:CHAN13:DPCH:CCOD:BPFR? number of data bits. 1 of data bits is 1.
Usage:	Query only	
Manual operation:	See "Bits pe	er Frame (DPDCH)" on page 128

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:SFORmat <SFormat>

The command sets the slot format for the selected enhanced DPCH of base station 1. The slot format is fixed for channel-coded measurement channels conforming to the standard - "Reference Measurement Channel". Changing the slot format automatically activates User coding (W3GP:BST:ENH:CHAN<11...13>:DPCH:CCOD:TYPE USER). The slot format also fixes the symbol rate, bits per frame, pilot length and TFCI state parameters.

When a channel coding type conforming to the standard is selected ([: SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:TYPE) and channel coding is activated, the slot format is ([: SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:STATe) automatically set to the associated value.

Changing the slot format automatically activates User coding (W3GP:BST:ENH:CHAN<11...13>:DPCH:CCOD:TYPE USER).

The command sets the symbol rate (W3GP:BST:ENH:CHAN:DPCH:CCOD:SRAT), the bits per frame (W3GP:BST:ENH:CHAN:DPCH:CCOD:BPFR), the pilot length (W3GP:BST1:CHAN:DPCC:PLEN), and the TFCI state (W3GP:BST1:CHAN:DPCC:TFCI STAT) to the associated values.

Parameters:

<sformat></sformat>	integer		
	Range: *RST:	0 to dynamic 0	
Example:		BST:ENH:CHAN13:DPCH:CCOD:SFOR 4 mat 4 for Enhanced DPCH13.	
Manual operation:	See "Slot Fe	ormat (DPDCH)" on page 128	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:SRATe?

The command queries the symbol rate.

The symbol rate depends on the selected slot format ([:SOURce<hw>]:BB:W3GPp: BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SFORmat), and if the slot format changes, this changes automatically as well.

Return values:

<srate></srate>	D7K5 D15K D30K D60K D120k D240k D480k D960k D1920k D2880k D3840k D4800k D5760k D2X1920K D2X960K2X1920K *RST: D30K
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:CCOD:SRAT? queries the symbol rate. Response: 'D30K' the symbol rate of Enhanced DPCH 13 is 30 ksps.
Usage:	Query only
Manual operation:	See "Symbol Rate (DPDCH)" on page 128

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:STATe <State>

The command activates or deactivates channel coding for the selected enhanced DPCH.

When channel coding is activated and a channel coding type conforming to the standard is selected, (BB:W3GP:BST:ENH:CHAN:DPCH:CCOD:TYPE) the slot format, (BB:W3GP:BST:ENH:CHAN:DPCH:CCOD:SFOR) and thus the symbol rate, (BB:W3GP:BST:ENH:CHAN:DPCH:CCOD:SRAT) the bits per frame, (BB:W3GP:BST:ENH:CHAN:DPCH:CCOD:BPFR), the pilot length (BB:W3GP:BST1:CHAN:DPCC:PLEN) and the TFCI state (BB:W3GP:BST1:CHAN:DPCC:TFCI STAT) are set to the associated values.

Parameters:

<state></state>	ON OFF	
	*RST:	OFF
Example:	selects char DPCH 13. BB:W3GP:E	AST:ENH:CHAN13:DPCH:CCOD:TYPE M12K2 nnel coding type RMC 12.2 kbps for Enhanced BST:ENH:CHAN13:DPCH:CCOD:STAT ON hannel coding.
Manual operation:	See "Chann	el Coding State" on page 126

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:TYPE <Type>

The command selects the channel coding scheme in accordance with the 3GPP specification. The 3GPP specification defines 4 reference measurement channel coding types, which differ in the input data bit rate to be processed (12.2, 64, 144 and 384 ksps). The additional AMR CODER coding scheme generates the coding of a voice channel. The BTFD coding types with different data rates are also defined in the 3GPP specification (TS 34.121). They are used for the receiver quality test Blind Transport Format Detection.

When a channel coding type conforms to the standard and channel coding is activated, (:BB:W3GP:BST:ENH:CHAN<n>:DPCH:CCOD:STAT) the slot format (:BB:W3GP:BST:ENH:CHAN<n>:DPCH:CCOD:SFOR) and thus the symbol rate (:BB:W3GP:BST:ENH:CHAN<n>:DPCH:CCOD:SRAT), the bits per frame, (:BB:W3GP:BST:ENH:CHAN<n>:DPCH:CCOD:BPFR), the pilot length (:BB:W3GP:BST1:CHAN<n>:DPCC:PLEN) and the TFCI state (:BB:W3GP:BST1:CHAN<n>:DPCC:TFCI:STAT) are set to the associated values.

Parameters:

<Type>

M12K2 | M64K | M144k | M384k | AMR | BTFD1 | BTFD2 | BTFD3

M12K2

Measurement channel with an input data bit rate of 12.2 ksps.

M64K

Measurement channel with an input data bit rate of 64 ksps.

M144k

Measurement channel with an input data bit rate of 144 ksps.

M384k

Measurement channel with an input data bit rate of 384 ksps.

AMR

Channel coding for the AMR Coder (coding a voice channel).

USER

This parameter cannot be set. USER is returned whenever a user-defined channel coding is active, that is to say, after a channel coding parameter has been changed or a user coding file has been loaded. The file is loaded by the command [: SOURce<hw>]:BB:W3GPp:BSTation:ENHanced: CHANnel<ch0>:DPCH:CCODing:USER:LOAD.

BTFD1

Blind Transport Format Detection Rate 1 (12.2 kbps). **BTFD2**

Blind Transport Format Detection Rate 2 (7.95 kbps).

BTFD3

Blind Transport Format Detection Rate 3 (1.95 kbps). *RST: M12K2

Example: BB:W3GP:BST:ENH:CHAN13:DPCH:CCOD:TYPE M144 selects channel coding scheme RMC 144 kbps.

Manual operation: See "Channel Coding Type" on page 127

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing: USER:CATalog?

Queries existing files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values: <catalog></catalog>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:BST:ENH:CHAN:DPCH:CCOD:USER:CAT? queries the existing files with user coding. Response: user_cc1 there is one file with user coding.</pre>
Usage:	Query only
Manual operation:	See "User Coding" on page 127

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:USER:LOAD <Filename>

The command loads the specified files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters: <filename></filename>	<user_coding></user_coding>
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:BST:ENH:CHAN13:DPCH:CCOD:USER:LOAD 'user_cc1' loads the specified file with user coding.</pre>
Usage:	Setting only
Manual operation:	See "User Coding" on page 127

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: CCODing:USER:STORe <Filename>

The command saves the current settings for channel coding as user channel coding in the specified file.

The files are stored with the fixed file extensions *.3g_ccod_dl in a directory of the user's choice. The directory in which the file is stored is defined with the command MMEMory:CDIR. To store the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

<filename></filename>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:BST:ENH:CHAN13:DPCH:CCOD:USER:STOR 'user_cc1' saves the current channel coding setting in file user_cc1 in directory /var/user/temp/CcodDpchUser.</pre>
Usage:	Setting only
Manual operation:	See "User Coding" on page 127

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: INTerleaver2 <Interleaver2>

The command activates or deactivates channel coding interleaver state 2 for the selected channel.

Interleaver state 2 is activated or deactivated for all the transport channels together. Interleaver state 1 can be activated and deactivated for each transport channel individually (command [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced: CHANnel<ch0>:DPCH:TCHannel<di0>:INTerleaver).

Note: The interleaver states do not cause the symbol rate to change.

Parameters: <interleaver2></interleaver2>	ON OFF *RST: ON	
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:INT OFF deactivates channel coding interleaver state 2 for all the TCHs of DPCH13.	
Manual operation:	See "Interleaver 2 State" on page 131	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:CRCSize <CrcSize>

The command defines the CRC length for the selected transport channel. It is also possible to deactivate checksum determination.

Parameters:

<crcsize></crcsize>	NONE 8 12 16 24 *RST: 16
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH0:CRCS NONE deactivates checksum determination for the DCCH of DPCH13.

Manual operation: See "Size of CRC" on page 130

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA <Data>

The command determines the data source for the data fields of enhanced channels with channel coding. If channel coding is not active, the DPCH data source is used (:SOURce:BB:W3GPp:BST:CHANnel:DATA).

Parameters:

<data></data>	PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt ZERO ONE PATTern				
	PNxx The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.				
	DLISt A data list is used. The data list is selected with the command [:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced: CHANnel<ch0>:DPCH:TCHannel<di0>:DATA:DSELect.</di0></ch0></hw>				
	ZERO ONE Internal 0 and 1 data is used.				
	<pre>PATTern Internal data is used The bit pattern for the data is defined with the command [:SOURce<hw>]:BB:W3GPp:BSTation: ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:DATA: PATTern.</di0></ch0></hw></pre>				
	*RST: PN9				
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:DATA PATT selects the Pattern data source for the data fields of DTCH1 of DPCH13. The bit pattern is defined with the following command. BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:DATA:PATT #H3F,8 defines the bit pattern.				
Manual operation:	See "Data Source" on page 129				

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA:DSELect <DSelect>

The command selects the data list for enhanced channels for the DLISt selection.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MME-Mory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<DSelect> string

Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:DATA DLIS				
	selects the Data Lists data source for DTCH1 of DPCH13				
	MMEM:CDIR '/var/user/temp/IQData'				
	selects the directory for the data lists.				
	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:DATA:DSEL				
	'bts tch'				
	selects the file bts_tch as the data source.				
Manual operation:	See "Data Source" on page 129				

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DATA:PATTern <Pattern>

The command determines the bit pattern for the PATTern selection. The maximum length is 64 bits.

Parameters:

<pattern></pattern>	64 bits		
	*RST:	#H0,1	
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:DATA:PATT #H3F, 8 defines the bit pattern.		

Manual operation: See "Data Source" on page 129

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:DTX <Dtx>

The command sets the number of DTX (Discontinuous Transmission) bits. These bits are entered in the data stream between rate matching and interleaver 1 and used for the BTFD reference measurement channels rate 2 and rate 3.

Parameters:

<dtx></dtx>	integer		
	Range: *RST:	0 to 1024 0	
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:DTX 257 257 bits are entered in the data stream between rate matching and interleaver 1.		
Manual operation:	See "DTX Indication Bits" on page 131		

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:EPRotection <EProtection>

The command determines the error protection.

Note:

The transport channel designations for remote control are TCHannel0 for DCCH, TCHannel1 to TCHannel6 for DTCH1 to DTCH6.

Parameters:

<eprotection></eprotection>	NONE TURB03 CON2 CON3		
	NONE		
	No error protection		
	TURBo3 Turbo Coder of rate 1/3 in accordance with the 3GPP specifica- tions.		
	CON2 CON3		
	Convolution Coder of rate $\frac{1}{2}$ or $\frac{1}{3}$ with generator polynomials defined by 3GPP.		
	*RST: CON3		
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:EPR NONE error protection for transp ¹ / ₃ ort channel DTCH1 of DPCH13 is deactivated.		
Manual operation:	See "Error Protection" on page 131		

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:INTerleaver <Interleaver>

The command activates or deactivates channel coding interleaver state 1 for the selected channel.

Interleaver state 1 can be activated and deactivated for each transport channel individually. The channel is selected via the suffix at TCHannel.

Interleaver state 2 can only be activated or deactivated for all the transport channels
together ([:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:
DPCH:INTerleaver2).

Note: The interleaver states do not cause the symbol rate to change.

Parameters:

<interleaver></interleaver>	ON OFF	
	*RST:	ON

Manual operation: See "Interleaver 1 State" on page 131

The transport channel designations for remote control are TCHannel0 for DCCH, TCHannel1 to TCHannel6 for DTCH1 to DTCH6.

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:RMATtribute <RmAttribute>

Sets data rate matching.

Enhanced Channels of Base Station 1

Parameters:		
<rmattribute></rmattribute>	integer	
	Range: *RST:	1 to 1024 256
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:RMAT 1024 sets the rate matching attribute for DTCH1 of DPCH13 to 1024.	
Manual operation:	See "Rate Matching Attribute" on page 130	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:STATe <State>

The command activates/deactivates the selected transport channel.

Parameters:

<state></state>	ON OFF	
	*RST:	OFF
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH1:STAT ON activates DTCH1 of DPCH13.	
Manual operation:	See "Transport Channel State" on page 129	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:TBCount <TbCount>

Defines the number of blocks used for the selected transport channel.

Parameters:

<tbcount></tbcount>	integer	
	Range: *RST:	1 to 24 1
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH:TBC 4 sets 4 transport blocks for DTCH1 of DPCH13.	
Manual operation:	See "Transport Block" on page 130	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:TBSize <TbSize>

Sets the size of the data blocks.

Parameters: <tbsize></tbsize>	integer Range: 0 to 4096
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:TCH:TBS 1024 sets the length of the transport blocks for DTCH1 of DPCH13 to 1024.
Manual operation:	See "Transport Block Size" on page 130

_

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: TCHannel<di0>:TTINterval <TtInterval>

Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Parameters: <ttinterval></ttinterval>	10MS 20MS 40MS	
Example:	SOURce1:BB:W3GPp:BSTation:ENHanced:CHANnel13: DPCH:TCHannel1:TTINterval 20ms sets that DTCH1 of DPCH13 is divided into 2 frames.	
Manual operation:	See "Transport Time Interval" on page 130	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing: INTerleaver<di><Interleaver>

The command activates or deactivates channel coding interleaver state 1 or 2 for the P-CCPCH.

Note: The interleaver states do not cause the symbol rate to change.

Parameters:		
<interleaver></interleaver>	ON OFF	
	*RST:	ON
Example:	BB:W3GP:BST:ENH:PCCP:CCOD:INT1 OFF deactivates channel coding interleaver state 1 for the P-CCPCH.	
Manual operation:	See "Interleaver" on page 123	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:STATe <State>

The command activates or deactivates channel coding for the enhanced P-CCPCH. The coding scheme of the P-CCPCH (BCH) is defined in the standard.

Parameters:		
<state></state>	ON OFF	
	*RST: OFF	
Example:	BB:W3GP:BST:ENH:PCCP:CCOD:STAT ON	
	activates channel coding for the enhanced P-CCPCH	
Manual operation:	See "Channel Coding State" on page 123	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:TYPE?

The command queries the channel coding scheme in accordance with the 3GPP specification. The coding scheme of the P-CCPCH (BCH) is defined in the standard. The channel is generated automatically with the counting system frame number (SFN). The system information after the SFN field is completed from the selected data source.

Enhanced Channels of Base Station 1

Return values: <type></type>	BCHSfn *RST: BCHSfn	
Example:	BB:W3GP:BST:ENH:PCCP:CCOD:TYPE? queries the channel coding scheme of the P-CCPCH. Response: 'BCHS' the channel coding scheme with SFN is used.	
Usage:	Query only	
Manual operation:	See "Channel Coding Type" on page 123	

8.8.3 Dynamic Power Control Settings

(not supported in Baseband C/D)

Suffixes

SOURce<hw>: value range [1]|2

Example: Configuring the Dynamic Power Control Settings

The following is a simple programing example with the purpose to show **all** commands for this task. In real application, some of the commands may be ommitted.

```
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:DIRection UP
// selects direction up, a high level of the control signals
// leads to an increase of the channel power
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:STEP 1 dB
// selects a step width of 1 dB.
// A high level of the control signal leads to
// an increase of 1 dB of the channel power,
// a low level to a decrease of 1 dB.
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:RANGe:DOWN 10 dB
// selects a dynamic range of 10 dB for ranging up the channel power
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:RANGe:UP 50 dB
// selects a dynamic range of 50 dB for ranging up the channel power
// The overall increase and decrease of channel power,
// i.e. the dynamic range is limited to 60 dB
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:MODE TPC
// selects the source of the power control signal
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:STATe ON
// activates Dynamic Power Control for DPCH 11
SOURce:BB:W3GPp:BSTation:ENHanced:CHAN11:DPCH:DPControl:POWer?
// queries the deviation of the channel power of DPCH 11
[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:
     [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:
     [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:MODE.441
```

Enhanced Channels of Base Station 1

OURce <hw>]:BB:W3GPp:BSTation<st>:ENHanced:CHANnel<ch0>:DPCH:</ch0></st></hw>	
DPControl:RANGe:UP4	41
OURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:</ch0></hw>	
RANGe:DOWN4	41
OURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:</ch0></hw>	
STATe4	41
0URce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:</ch0></hw>	
STEP:MANual	42
0URce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:</ch0></hw>	
STEP[:EXTernal]4	42
0URce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl[:</ch0></hw>	
POWer]?4	42

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:DIRection <Direction>

The command selects the Dynamic Power Control direction. The selected mode determines if the channel power is increased (UP) or decreased (DOWN) by a control signal with high level.

Parameters:	
<direction></direction>	UP DOWN
	*RST: UP
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 439
Manual operation:	See "Direction" on page 136

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:CONNector <Connector>

Determines the input connector at that the instrument expects the external control signal.

Parameters:

<connector></connector>	LOCal GLOBal *RST: LOCal
Example:	External control signal at the local TM3 connector of Baseband A. SOURcel:INPut:TM3:DIRection INPut SOURcel:INPut:TM3:SIGNal FEEDback SOURcel:BB:W3GPp:BSTation:ENHanced:CHANnell2: DPCH:DPControl:CONNector LOCal
Example:	External control signal at the global USER6 connector. SOURce:INPut:USER6:DIRection INPut SOURce:INPut:USER6:SIGNal FEEDback SOURce1:BB:W3GPp:BSTation:ENHanced:CHANnel12: DPCH:DPControl:CONNector GLOBal

Manual operation: See "Connector" on page 136

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:MODE <Mode>

The command selects the control signal source for Dynamic Power Control.

Parameters:		
<mode></mode>	TPC MANual	
	*RST: TPC	
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 439	
Manual operation:	See "Mode" on page 136	

[:SOURce<hw>]:BB:W3GPp:BSTation<st>:ENHanced:CHANnel<ch0>:DPCH: DPControl:RANGe:UP <Up> [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:

DPControl:RANGe:DOWN <Down>

The command selects the dynamic range for ranging down the channel power.

Parameters:

<down></down>	float	
	Range: 0 to 60	
	Increment: 0.01 *RST: 10	
	Default unit: dB	
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 439	
Manual operation:	See "Up Range/Down Range" on page 137	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:STATe <State>

The command activates/deactivates Dynamic Power Control.

Parameters:		
<state></state>	0 1 OFF ON	
	*RST: 0	
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 439	
Manual operation:	See "Dynamic Power Control State" on page 135	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:STEP:MANual <Manual>

This command provides the control signal for manual mode of Dynamic Power Control.

Setting parameters: <manual></manual>	MAN0 MAN1 *RST: MAN0
Example:	BB:W3GP:BST:ENH:CHAN11:DPCH:DPC:MODE MAN BB:W3GP:BST:ENH:CHAN11:DPCH:DPC:STEP 0.5 dB BB:W3GP:BST:ENH:CHAN11:DPCH:DPC:STAT ON BB:W3GP:BST:ENH:CHAN11:DPCH:DPC:STEP:MAN MAN0
Usage:	Setting only
Manual operation:	See "Mode" on page 136

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl:STEP[:EXTernal] <External>

This command sets step width by which – with Dynamic Power Control being switched on - the channel power of the selected enhanced channel is increased or decreased.

Parameters:

<external></external>	float	
	Range:0.5 to 6Increment:0.01*RST:1Default unit:dB	
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 439	
Manual operation:	See "Power Step" on page 136	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH: DPControl[:POWer]?

The command queries the deviation of the channel power (delta POW) from the set power start value of the corresponding enhanced channels.

Return values:

<power></power>	float	
	Range: Increment: *RST:	-60 to 60 0.01 0
Example:	see Example on page 439	e "Configuring the Dynamic Power Control Settings"
Usage:	Query only	
Manual operation:	See "Power Control Graph" on page 137	

Enhanced Channels of Base Station 1

8.8.4 Error Insertion

LAYer	[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:</ch0></hw>	
RATE.443[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT: STATe.444[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BLOCk:RATE.444[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BLOCk:STATe.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:LAYer.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:RATE.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:RATE.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:STATe.446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:STATE.446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BLOCk:RATE.446</ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw>	LAYer	443
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT: STATe</ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:</ch0></hw>	
STATe.444[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:RATE.444[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:STATe.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:LAYer.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:RATE.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:RATE.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:STATe.446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:RATE.446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw>	RATE	443
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BLOCk:RATE</ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:</ch0></hw>	
BLOCk:RATE.444[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:STATe.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:LAYer.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:RATE.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:RATE.445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:STATe.446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:RATE.446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw>	STATe	444
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BLOCk:STATe</ch0></hw>		
BLOCk:STATe. .445 [:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:LAYer. .445 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:RATE. .445 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:RATE. .445 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:STATe. .446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BLOCk:RATE. .446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw>	BLOCk:RATE	444
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:LAYer445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:RATE445[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:STATE446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:STATE446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:RATE446[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:</ch0></hw>	
BIT:LAYer	BLOCk:STATe	445
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:RATE. 445 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:STATE. 446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BLOCk:RATE. 446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BLOCk:RATE. 446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw></ch0></hw></ch0></hw></ch0></hw></ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw>	
BIT:RATE. 445 [:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:STATe. 446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BLOCk:RATE. 446 [:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: 446</ch0></hw></ch0></hw></ch0></hw>	BIT:LAYer	445
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BIT:STATe</ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw>	
BIT:STATe	BIT:RATE	445
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor: BLOCk:RATE</ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw>	
BLOCk:RATE	BIT:STATe	446
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw>	[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw>	
	BLOCk:RATE	446
BLOCk:STATe446	[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:</ch0></hw>	
	BLOCk:STATe	446

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BIT:LAYer <Layer>

The command selects the layer in the coding process in which bit errors are inserted.

Parameters:	
-------------	--

<layer></layer>	TRANsport PHYSical		
	TRANsport Transport Layer (Layer 2). This layer is only available when channel coding is active.		
	PHYSical Physical layer (Layer 1). *RST: PHYSical		
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:DERR:BIT:LAY PHYS selects layer 1 for entering bit errors.		

Manual operation:See "Insert Errors On" on page 132

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BIT:RATE <Rate>

The command sets the bit error rate.

Enhanced Channels of Base Station 1

Parameters: <rate></rate>	float	
	Range: Increment: *RST:	1E-7 to 0.5 1E-7 0.001
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:DERR:BIT:RATE 1E-4 sets a bit error rate of 0.0001.	
Manual operation:	See "Bit Error Rate" on page 132	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BIT:STATe <State>

The command activates bit error generation or deactivates it.

Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which to insert the errors (the physical or the transport layer, [:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced: CHANnel<ch0>:DPCH:DERRor:BIT:LAYer). When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Parameters:

<state></state>	ON OFF *RST:	0
Example:		ST:ENH:CHAN13:DPCH:DERR:BIT:STAT ON error generation.
Manual operation:	See "Bit Erro	or State (Enhanced DPCHs)" on page 132

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BLOCk:RATE <Rate>

Sets the block error rate.

Parameters: <rate></rate>	float	
	Increment:	1E-4 to 0.5 1E-4 0.1
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:DERR:BLOC:RATE 1E-2 sets the block error rate to 0.01.	
Manual operation:	See "Block Error Rate" on page 133	

[:SOURce<hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor: BLOCk:STATe <State>

The command activates or deactivates block error generation. Block error generation is only possible when channel coding is activated.

During block error generation, the CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate a defective signal.

Parameters:

<state></state>	ON OFF
	*RST: 0
Example:	BB:W3GP:BST:ENH:CHAN13:DPCH:CCOD:STAT ON activates channel coding. BB:W3GP:BST:ENH:CHAN13:DPCH:DERR:BLOC:RATE 5E-1 sets the block error rate to 0.1. BB:W3GP:BST:ENH:CHAN13:DPCH:DERR:BLOC:STAT ON activates block error generation.
Manual operation:	See "Block Error State" on page 133

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BIT:LAYer <Layer>

The command selects the layer in the coding process in which bit errors are inserted.

Parameters: <layer></layer>	TRANsport PHYSical		
	TRANsport Transport Layer (Layer 2)		
	PHYSical Physical layer (Layer 1) *RST: PHYSical		
Example:	BB:W3GP:BST:ENH:CHAN12:HSDP:DERR:BIT:LAY PHYS selects layer 1 for entering bit errors.		
Manual operation:	See "Insert Errors On (HSDPA H-Set)" on page 118		

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BIT:RATE <Rate>

Sets the bit error rate.

Parameters:		
<rate></rate>	float	
	*RST:	1E-3
Example:		ST:ENH:CHAN12:HSDP:DERR:BIT:RATE 1E-4 ror rate of 0.0001.
Manual operation:	See "Bit Erro	or Rate (HSDPA H-Set)" on page 118

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BIT:STATe <State>

The command activates bit error generation or deactivates it.

Bit errors are inserted into the data stream of the coupled HS-PDSCHs. It is possible to select the layer in which the errors are inserted (physical or transport layer). When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Parameters:

<state></state>	ON OFF *RST: 0
Example:	BB:W3GP:BST:ENH:CHAN12:HSDP:DERR:BIT:STAT ON activates bit error generation.
Manual operation:	See "Bit Error State (HSDPA H-Set)" on page 117

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BLOCk:RATE <Rate>

The command sets the block error rate.

Parameters:			
<rate></rate>	float		
	Range: *RST:	1E-4 to 5E-1 5E-1	
Example:	BB:W3GP:BST:ENH:CHAN12:HSDP:DERR:BLOC:RATE 1E-2 sets the block error rate to 0.01.		
Manual operation:	See "Block Error Rate (HSDPA H-Set)" on page 118		

[:SOURce<hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa: DERRor:BLOCk:STATe <State>

The command activates or deactivates block error generation. During block error generation, the CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate a defective signal.

Manual operation:	activates block error generation. See "Block Error State (HSDPA H-Set)" on page 118
	sets the block error rate to 0.1. BB:W3GP:BST:ENH:CHAN12:HSDP:DERR:BLOC:STAT ON
Example:	*RST: 0 BB:W3GP:BST:ENH:CHAN12:HSDP:DERR:BLOC:RATE 5E-1
Parameters: <state></state>	ON OFF

8.9 User Equipment Settings

The SOURce:BB:W3GPp:MSTation system contains commands for setting the user equipment. The commands of this system only take effect when the 3GPP FDD standard is activated, the UP transmission direction is selected and the particular user equipment is enabled:

SOURce:BB:W3GPp:STATe ON

SOURce:BB:W3GPp:LINK UP

SOURce:BB:W3GPp:MSTation2:STATe ON

MSTation<st>

The numeric suffix to MSTation determines the user equipment. The value range is 1 .. 4. If the suffix is ommited, MS1 is selected.

•	General Settings	447
	Compressed Mode Settings	
	DPCCH Settings	
	HS-DPCCH Settings	
	DPDCH Settings	
	PCPCH Settings	
	PRACH Settings	
	HSUPA Settings	
	UL-DTX and Uplink Scheduling Settings	
	Dynamic Power Control Settings	

8.9.1 General Settings

[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:COUNt</hw>	447
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:POWer:OFFSet</hw>	448
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:SCODe:STEP</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:STATe</hw>	449
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:TDELay:STEP</hw>	449
[:SOURce <hw>]:BB:W3GPp:MSTation:PRESet</hw>	449
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:MODE</st></hw>	449
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:SCODe</st></hw>	450
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:SCODe:MODE</st></hw>	451
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:STATe</st></hw>	451
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:TDELay</st></hw>	451
[:SOURce <hw>]:BB:W3GPp:LREFerence</hw>	452

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:COUNt <Count>

The command sets the number of additional user equipment.

Up to 128 additional user equipment can be simulated - corresponding to a receive signal for a base station with high capacity utilization. The fourth user equipment (UE4) serves as a template for all other stations. The only parameters of the additional user equipment to be modified are the scrambling code and the power.

Parameters: <count></count>	integer Range: 1 to 128 *RST: 4
Example:	BB:W3GP:MST:ADD:COUN 20 sets 20 additional user equipment. BB:W3GP:MST:ADD:POW:OFFS -3.0 sets the power offset to -3 dB. BB:W3GP:MST:ADD:SCOD:STEP 1 sets the step width for increasing the scrambling code to 1. BB:W3GP:MST:ADD:STAT ON connects the 20 user equipment to the 3GPP FDD signal.
Manual operation:	See "Number of Additional UE" on page 78

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:POWer:OFFSet <Offset>

Sets the power offset of the active channels of the additional user equipment relative to the power of the active channels of the reference station UE4.

The offset applies to all the additional user equipment. The resultant overall power must fall within the range 0 ... - 80 dB. If the value is above or below this range, it is limited automatically.

Parameters:

<offset></offset>	float		
	Range: Increment: *RST:		
Example:	BB:W3GP:MST:ADD:POW:OFFS -3.0 sets the offset to -3 dB.		
Manual operation:	See "Power Offset" on page 79		

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:SCODe:STEP <Step>

Sets the step width for increasing the scrambling code of the additional user equipment. The start value is the scrambling code of UE4.

Parameters:		
<step></step>	integer	
	Range: 0 to #HFFFFF	
Example:	BB:W3GP:MST:ADD:SCOD:STEP #H55 sets the step width for increasing the scrambling code to #H55.	
Manual operation:	See "Scrambling Code Step" on page 79	

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:STATe <State>

Activates additional user equipment.

Manual operation:	connects the additional user equipment to the 3GPP FDD signal. See "State" on page 78	
Example:	SOURce1:BB:W3GPp:MSTation:ADDitional:STATe ON	
	*RST: 0	
<state></state>	0 1 OFF ON	
Parameters:		

[:SOURce<hw>]:BB:W3GPp:MSTation:ADDitional:TDELay:STEP <Step>

The command sets the step width for the time delay of the additional user equipment to one another. The start value is the time delay of UE4. Entry is made in chips and can be a maximum of 1 frame.

Parameters:

<step></step>	integer		
	Range: *RST:	0 to 38400 0	
Example:	BB:W3GP:MST:ADD:TDEL:STEP 256 shifts each of the user equipment 256 chips apart, starting from the time delay of UE4.		
Manual operation:	See "Time Delay Step" on page 79		

[:SOURce<hw>]:BB:W3GPp:MSTation:PRESet

The command produces a standardized default for all the user equipment. The settings correspond to the *RST values specified for the commands.

All user equipment settings are preset.

Example:	BB:W3GP:MST:PRES resets all the user equipment settings to default values.
Usage:	Event
Manual operation:	See "Reset User Equipment" on page 67

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:MODE <Mode>

The command selects the operating mode for the user equipment.

Parameters:

<Mode>

PRACh | PCPCh | DPCDch | PPRach | PPCPch

PRACh

The user equipment only generates a signal with a physical random access channel (PRACH). This channel is used to set up the user equipment connection with the base station. The channel-specific parameters of the PRACH can be set with the commands :SOURce:BB:W3GPp:MSTation<n>:PRACh:...

PPRAch

The user equipment only generates a signal with the preamble component of a physical random access channel (PRACH). The parameters of the PRACH preamble can be set with the commands :SOURce:BB:W3GPp:MSTation<n>:PRACh:...

PCPCh

The user equipment only generates a signal with a physical common packet channel (PCPCH). This channel is used to transmit packet-oriented services (e.g. SMS). The channel-specific parameters of the PCPCH can be set with the commands :SOURce:BB:W3GPp:MSTation<n>:PCPCh:...

PPCPch

The user equipment only generates a signal with the preamble component of a physical common packet channel (PCPCH). The parameters of the PCPCH preamble can be set with the commands :SOURce:BB:W3GPp:MSTation<n>:PCPCh:...

DPCDch

The user equipment generates a signal with a dedicated physical control channel (DPCCH), up to 6 dedicated physical data channels (DPDCH), up to one HS-DPCCH channel, up to one E-DPCCH channel and up to four E-DPDCH channels. This signal is used for voice and data transmission.

*RST: DPCDch

Example: BB:W3GP:MST1:MODE DPCD switches the user equipment to standard mode - transmission of voice and data.

Manual operation: See "Mode" on page 160

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCODe <SCode>

The command sets the scrambling code. Long or short scrambling codes can be generated (command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCODe:MODE).

Parameters: <SCode>

integer Range: #H0 to #HFFFFFF *RST: #H0

 Example:
 BB:W3GP:MST2:SCOD #H12

 sets scrambling code #12.

 Manual operation:
 See "Scrambling Code (hex)" on page 161

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:SCODe:MODE <Mode>

The command sets the type for the scrambling code. The scrambling code generator can also be deactivated for test purposes.

SHORt is only standardized for the selection :BB:W3GP:MST:MODE DPCDh and :BB:W3GP:MST:MODE PCPCh. But it can also be generated for the PCPCH for test purposes.

Parameters:

<mode></mode>	LONG SF	LONG SHORt OFF	
	*RST:	LONG	
Example:	BB:W3GP:MST2:SCOD:MODE OFF deactivates the scrambling code generator.		
Manual operation:	See "Scrar	nbling Mode" on page 161	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:STATe <State>

The command activates and deactivates the specified user equipment.

Parameters:			
<state></state>	0 1 OFF ON		
	*RST: ON		
Example:	BB:W3GP:MST2:STAT OFF		
	deactivates user equipment 2.		
Manual operation:	See "Select Basestation/User Equipment" on page 69		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:TDELay <TDelay>

The command sets the time shift of the selected user equipment compared to user equipment 1 in chips.

Parameters: <tdelay></tdelay>	integer Range: *RST:	0 to 38400 0
Example:		MST2:TDEL 256 equipment 2 by 256 chips compared to user equip-
Manual operation:	See "Time I	Delay" on page 161

[:SOURce<hw>]:BB:W3GPp:LREFerence <Reference>

Determines the power reference for the calculation of the output signal power in uplink direction.

Parameters:

<reference></reference>	RMS DPCC PMP LPP EDCH HACK PCQI		
	RMS = RMS Power, DPCC = First DPCCH, PMP = PRACH Mes- sage Part, LPP = Last PRACH Preamble, EDCH = First E-DCH, HACK = First HARQ-ACK, PCQI = First PCI/CQI		
	*RST: RMS		
Example:	SOURce1:BB:W3GPp:LREFerence RMS		
Manual operation:	See "Power Reference" on page 70		

8.9.2 Compressed Mode Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:METHod</st></hw>	452
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGD</ch></st></hw>	.452
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGL<di></di></ch></st></hw>	453
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGPL</ch></st></hw>	453
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGSN</ch></st></hw>	.453
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:STATe</st></hw>	.454

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:METHod <Method>

The command selects compressed mode method.

Parameters: <method></method>	HLSCheduling SF2		
	SF2		
	The data is compressed by halving the spreading factor.		
	HLSChedulingThe data is compressed by stopping the transmission of the datastream during the transmission gap.*RST:SF2		
Example:	BB:W3GP:MST2:CMOD:METH HLSC selects compressed mode method High Layer Scheduling.		
Manual operation:	See "Compressed Mode Method - UE" on page 95		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGD <Tgd>

Sets the transmission gap distances.

Parameters:			
<tgd></tgd>	integer		
	Range: *RST:	3 to 100 15	
Example:	BB:W3GP:MST2:CMOD:PATT2:TGD 7 sets transmission gap distance of pattern 2 to 7 slots.		
Manual operation:	See "Distance" on page 97		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGL<di><Tgl>

Sets the transmission gap lengths.

Parameters: <tgl></tgl>	integer	
	Range: *RST:	3 to 14 3
Example:		IST2:CMOD:PATT2:TGL1 4 ission gap length of gap 1 of pattern 2 to 4 slots.
Manual operation:	See "Gap L	en:" on page 97

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGPL <Tgpl>

The command sets the transmission gap pattern lengths. Setting 0 is available only for pattern 2.

The transmission gap pattern lengths of the base station with the same suffix as the selected user equipment is set to the same value.

Parameters:

<tgpl></tgpl>	integer	
	Range: *RST:	0 to 100 2
Example:		IST2:CMOD:PATT2:TGPL 7 ssion gap pattern length of pattern 2 to 7 frames.
Manual operation:	See "Patterr	Len:" on page 98

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGSN <Tgsn>

Sets the transmission gap slot number of pattern 1.

Parameters: <Tgsn> Integer Range: 0 to 14 *RST: 7 Example: BB:W3GP:MST2:CMOD:PATT:TGSN 4 sets slot number of pattern 1 to slot 4.

Manual operation: See "At Slot:" on page 97

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CMODe:STATe <State>

The command activates/deactivates the compressed mode.

Parameters:		
<state></state>	ON OFF	
	*RST: 0	
Example:	BB:W3GP:MST2:CMOD:STAT ON activates compressed mode for user equipment 2.	
Manual operation:	See "Compressed Mode State" on page 94	

8.9.3 DPCCH Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:CCODe?</st></hw>	454
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE</st></hw>	455
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:PATTern</st></hw>	455
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:POWer</st></hw>	455
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat</st></hw>	456
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI</st></hw>	456
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI:STATe</st></hw>	456
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TOFFset</st></hw>	457
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA</st></hw>	457
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:DSELect</st></hw>	458
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:PATTern</st></hw>	458
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MISuse</st></hw>	458
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE</st></hw>	459
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:PSTep</st></hw>	459
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:READ</st></hw>	460

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:CCODe?

Queries the channelization code and the modulation branch of the specified channel. The value is fixed.

Return values:

<ccode></ccode>	integer
	Range: 0 to max
Example:	BB:W3GP:MST1:DPCC:CCOD? queries the channelization code for DPCCH of user equipment 1. Response: Q,64
Usage:	Query only

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE <Mode>

The command sets the number of bits for the FBI field. With OFF, the FBI field is not used.

Note: The former 2-bits long FBI Mode "D2B" according to 3GPP Release 4 specification TS 25.211 is not supported any more.

The command sets the slot format ([:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:SFORmat) in conjunction with the set TFCl status ([:SOURce<hw>]:BB: W3GPp:MSTation<st>:DPCCh:TFCl:STATe) and the TPC Mode ([: SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE) to the associated values.

Parameters:

<mode></mode>	OFF D1B		
	*RST:	OFF	
Example:	BB:W3GP:MST1:DPCC:FBI:MODE OFF an FBI field is not used.		
Manual operation:	See "FBI Mode" on page 178		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:PATTern <Pattern>

The command determines the bit pattern when the PATTern data source is selected for the FBI field.

Parameters:

<pattern></pattern>	32 bits	
	The first parameter determines the bit pattern (choice of hexa- decimal, octal or binary notation), the second specifies the num- ber of bits to use.	
	*RST:	#H0,1
Example:	BB:W3GP:MST1:DPCC:FBI:PATT #H3F,8 defines the bit pattern of the data for the FBI field.	
Manual operation:	See "FBI Pattern (bin)" on page 178	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:POWer <Power>

The command defines the channel power for the DPCCH.

Parameters:

<power></power>	float	
	Range: Increment: *RST:	-80 dB to 0 dB 0.1 dB 0 dB
Example:		ST1:DPCC:POW -10 dB nnel power to -10 dB.

Manual operation: See "Power" on page 175

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat <SFormat>

The command sets the slot format for the DPCCH. The slot format defines the structure of the DPCCH slots and the control fields.

Slot Format # 4 is available only for instruments equipped with R&S SMW-K83.

Slot formats 0 to 4 are available for the DPCCH channel as defined in the 3GPP Release 7 specification TS 25.211.

Note:

The former slot formats 4 and 5 according to 3GPP Release 4 specification TS 25.211 are not supported any more.

The command sets the FBI mode ([:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:FBI:MODE), the TFCI status ([:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:TFCI:STATe) and the TPC Mode ([:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPCCh:TPC:MODE) to the associated values.

Parameters:

<sformat></sformat>	integer	
	Range: *RST:	0 to 4 0
Example:		IST2:DPCC:SFOR 3 format 3 for the DPCCH of user equipment 2.
Manual operation:	See "Slot Fe	ormat #" on page 176

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI <Tfci>

Sets the value of the TFCI (Transport Format Combination Indicator) field. This value selects a combination of 30 bits, which are divided into two groups of 15 successive slots.

Parameters:

<tfci></tfci>	integer	
	Range: *RST:	0 to 1023 0
Example:		MST1:DPCC:TFCI 21 Cl value to 21.
Manual operation:	See "TFCI"	on page 178

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI:STATe <State>

The command activates the TFCI (Transport Format Combination Indicator) field for the DPCCH.

The command sets the slot format ([:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:SFORmat) in conjunction with the set FBI mode ([:SOURce<hw>]:BB: W3GPp:MSTation<st>:DPCCh:FBI:MODE) and the TPC Mode ([:SOURce<hw>]: BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE) to the associated values.

Parameters:

<state></state>	ON OFF
	*RST: 1
Example:	BB:W3GP:MST1:DPCC:TFCI:STAT ON activates the TFCI field.

Manual operation: See "Use TFCI" on page 177

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TOFFset <TOffset>

Sets the timing offset.

Parameters: <toffset></toffset>	integer
	Range: 0 to 1024 Increment: 1024
Example:	BB:W3GP:MST1:DPCC:TOFF? queries the timing offset.
Manual operation:	See "DL-UL Timing Offset" on page 176

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA <Data>

The command determines the data source for the TPC field of the DPCCH.

Parameters:

<	D	a	ta	>		
		a	ιa	^		

DLISt | ZERO | ONE | PATTern |

DLISt

A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC: DATA:DSELect.

ZERO | ONE

Internal 0 and 1 data is used.

PATTern

Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:TPC:DATA:PATTern. The maximum length is 64 bits.

*RST: ZERO

Example: BB:W3GP:MST2:DPCC:TPC:DATA PATT selects as the data source for the TPC field of user equipment 2 the bit pattern defined with the following command. BB:W3GP:MST2:DPCC:TPC:DATA:PATT #H48D0,16 defines the bit pattern. Manual operation: See "TPC Data Source" on page 178

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:DSELect <DSelect>

The command selects the data list when the DLISt data source is selected for the TPC field of the DPCCH.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	string
Example:	<pre>BB:W3GP:MST1:DPCC:TPC:DATA DLIS selects the Data Lists data source. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST1:DPCC:TPC:DATA:DSEL 'dpcch_tpc_1' selects the data list dpcch_tpc1.</pre>
Manual operation:	See "TPC Data Source" on page 178

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:PATTern <Pattern>

The command determines the bit pattern for the PATTern data source selection. The maximum length of the bit pattern is 64 bits.

Parameters:		
<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:		:MST1:DPCC:TPC:DATA:PATT #B11110000,8 e bit pattern of the data for the TPC field.
Manual operation:	See "TPC	Data Source" on page 178

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MISuse <MisUse>

The command activates "mis-" use of the TPC field (Transmit Power Control) for controlling the channel power of the user equipment.

The bit pattern (see com-

mands :SOURce:BB:W3GPp:MSTation:DPCCh:TPC:DATA...) of the TPC field of the DPCCH is used to control the channel power. A "1" leads to an increase of channel powers, a "0" to a reduction of channel powers. Channel power is limited to the range 0 dB to -60 dB. The step width for the change is defined by the command [: SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:PSTep.

Note: "Mis-"using the TPC field is available for UE2, UE3, UE4 only.

Parameters:	
<misuse></misuse>	ON OFF
	*RST: 0
Example:	BB:W3GP:MST2:DPCC:TPC:MIS ON
	activates regulation of the channel power via the bit pattern of the TPC field.
	BB:W3GP:MST2:DPCC:TPC:PST 1 dB
	sets the step width for the change of channel power to 1 dB.
Manual operation:	See "Misuse TPC for Output Power Control" on page 180

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE <Mode>

Selects the TPC (Transmit Power Control) mode.

The command sets the slot format ([:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:SFORmat) in conjunction with the set TFCI status ([:SOURce<hw>]:BB: W3GPp:MSTation<st>:DPCCh:TFCI:STATe) and the FBI Mode ([: SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE) to the associated values.

Parameters:

<mode></mode>	D2B D4B		
	D2B		
	A TPC field with a length of 2 bits is used.		
	D4B		
	(enabled only for instruments equipped with R&S SMW-K83) A TPC field with a length of 4 bits is used.		
	A 4 bits long TPC field can be selected, only for Slot Format 4 and disabled FBI and TFCI fields.		
	*RST: D2B		
Example:	BB:W3GP:MST1:DPCC:TPC:MODE D2B an TPC field with a length of 2 bits is used.		
Manual operation:	See "TPC Mode" on page 178		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:PSTep <PStep>

The command sets the level of the power step in dB for controlling the transmit power via the data of the TPC field.

Parameters:

<PStep>

-10 to 10
0.01
0

 Example:
 BB:W3GP:MST:DPCC:TPC:MIS ON

 activates regulation of the channel power via the bit pattern of the TPC field.

 BB:W3GP:MST:DPCC:TPC:PST 1 dB

 sets the step width for the change of channel power to 1 dB.

Manual operation: See "TPC Power Step" on page 180

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:READ <Read>

The command sets the read out mode for the bit pattern of the TPC field of the DPCCH.

The bit pattern is selected with the command SOUR:BB:W3GPp:MST:DPCC:TPC:DATA:PATT.

Parameters:

<Read>

CONTinuous | S0A | S1A | S01A | S10A

CONTinuous

The bit pattern is used cyclically.

S0A

The bit pattern is used once, then the TPC sequence continues with 0 bits.

S1A

The bit pattern is used once, then the TPC sequence continues with 1 bits.

S01A

The bit pattern is used once and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).

S10A

The bit pattern is used once and then the TPC sequence is continued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).

*RST: CONTinuous

- Example:
 BB:W3GP:MST2:DPCC:TPC:READ CONT

 the selected bit pattern is repeated continuously for the TPC sequence.
- Manual operation: See "TPC Read Out Mode" on page 179

8.9.4 HS-DPCCH Settings

8.9.4.1 Common Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:STATe</st></hw>	461
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer</st></hw>	461
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPatibility</st></hw>	461
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCODe?</st></hw>	462
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SDELay</st></hw>	462
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:TTIDistance</st></hw>	462

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:STATe <State>

This command activates or deactivates the HS-DPCCH.

Parameters:

<state></state>	0 1 OFF ON	
	*RST: 0	
Example:	BB:W3GP:MST1:DPCC:HS:STAT ON activates HS-DPCCH.	
Manual operation:	See "State (HS-DPCCH)" on page 188	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer <Power>

The command sets the channel power in dB. The power entered is relative to the powers of the other channels. If "Adjust Total Power to 0 dB" is executed ([: SOURce<hw>]:BB:W3GPp:POWer:ADJust), the power is normalized to a total power for all channels of 0 dB. The power ratios of the individual channels remains unchanged.

Parameters:

<power></power>	float		
	Range: Increment: *RST:	-80 dB to 0 dB 0.01 0 dB	
Example:		IST1:DPCC:HS:POW -30 Innel power to -30 dB.	
Manual operation:	See "Power	(HS-DPCCH)" on page 188	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPatibility <Compatibility>

The concept of the graphical user interface for the configuration of HS-DPCCH has been adapted to support simultaneous DC-HSDPA and MIMO operation, as required in 3GPP Release 9 onwards.

This command enables the configuration of the HS-DPCCH settings provided for backwards compatibility ("Up to Release 7").

Parameters:

<compatibility></compatibility>	REL7 REL8 REL8RT	
	*RST: REL8	
Example:	BB:W3GP:MST1:DPCC:HS:COMP REL8 sets the compatibility mode to Release 8 and Later.	
Manual operation:	See "Compatibility Mode (HS-DPCCH)" on page 189	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCODe?

Queries the channelization code and the modulation branch of the HS-DPCCH.

Return values: <ccode></ccode>	integer Range: *RST:	1 to 64 64
Example:	queries the Response:	AST1:DPCC:HS:CCOD? channelization code. : Q, 32 ization code is 32 and the modulation branch is Q.
Usage:	Query only	
Manual operation:	See "Chann	nelization Code" on page 175

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SDELay <SDelay>

Sets the delay between the uplink HS-DPCCH and the frame of uplink DPCH.

Parameters: <sdelay></sdelay>	integer a multiple m of 256 chips according to TS 25.211 7.7 Range: 0 to 250 *RST: 101
	Default unit: * 256 Chips
Example:	BB:W3GP:MST1:DPCC:HS:SDEL 101 sets a start delay of 101 x 256 chips.
Manual operation:	See "Start Delay" on page 189

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:TTIDistance <TtiDistance> Selects the distance between two packets in HSDPA packet mode.

Parameters: <ttidistance></ttidistance>	integer	
	Range: *RST:	1 to 16 5
Example:		MST1:DPCC:HS:TTID 4 nter TTI Distance of 4 subframes.
Manual operation:	See "Inter T	TI Distance (Interval)" on page 190

8.9.4.2 Up to Release 7 Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk</st></hw>	463
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PONAck</st></hw>	463
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HAPattern</st></hw>	464
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI:PLENgth</st></hw>	464
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues]</ch></st></hw>	465
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO[:MODE]</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POAAck</st></hw>	465
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POANack</st></hw>	466
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONAck</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONNack</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POCA</st></hw>	468
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTICount</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK</ch0></st></hw>	469
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI</ch0></st></hw>	469
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQIType</ch0></st></hw>	469
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQI<di></di></ch0></st></hw>	470

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk <Poack>

(Up to Release 7)

The command sets the channel power part of the ACK in dB.

Parameters:

<poack></poack>	float		
	Range: Increment: *RST:	-10 to 10 dB 0.1 0 dB	
Example:	BB:W3GP:MST1:DPCC:HS:POAC -2.5dB sets the channel power part of the ACK to 2.5 dB.		
Manual operation:	See "Power	Offset ACK" on page 201	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PONAck <PoNack>

(Up to Release 7)

The command sets the channel power part of the NACK in dB.

Parameters: <ponack></ponack>	float	
	Range: Increment: *RST:	-10 dB to 10 dB 0.1 0 dB
Example:	BB:W3GP:MST1:DPCC:HS:PONA -2.5dB sets the channel power part of the NACK to 2.5 dB.	
Manual operation:	See "Power	Offset NACK" on page 202

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HAPattern <HaPattern>

(Up to Release 7)

The command enters the pattern for the HARQ-ACK field (Hybrid-ARQ Acknowledgement). One bit is used per HS-DPCCH packet.

Parameters:

<hapattern></hapattern>	string
	The pattern is entered as string, the maximum number of entries is 32. Three different characters are permitted.
	1 The HARQ ACK is sent (ACK). Transmission was successful and correct.
	0 The NACK is sent (NACK). Transmission was not correct. With an NACK, the UE requests retransmission of the incorrect data.
	- Nothing is sent. Transmission is interrupted (Discontinuous Transmission, DTX).
	*RST: <empty></empty>
Example:	BB:W3GP:MST1:DPCC:HS:COMP REL7 BB:W3GP:MST1:DPCC:HS:HAP "110110-0" enters the pattern for the HARQ-ACK field.
Manual operation:	See "ACK/NACK Pattern" on page 202

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI:PLENgth <PLength>

Sets the length of the CQI sequence.

The values of the CQI sequence are defined with command [:SOURce<hw>]:BB: W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues]. The pattern is generated cyclically.

Parameters:

<PLength>

integer Range: 1 to 10 *RST: 1

Example:	BB:W3GP:MST1:DPCC:HS:CQI:PLEN 2
	the CQI sequence length is 2 values.
	BB:W3GP:MST1:DPCC:HS:CQI1 -1
	the first CQI value is -1.
	BB:W3GP:MST1:DPCC:HS:CQI2 2
	the second CQI value is 2.
Manual operation:	See "CQI Pattern Length" on page 202

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues] <Values>

Sets the values of the CQI sequence.

The length of the CQI sequence is defined with command [:SOURce<hw>]:BB: W3GPp:MSTation<st>:DPCCh:HS:CQI:PLENgth. The pattern is generated cyclically.

Parameters:

<values></values>	integer
	Value -1 means that no CQI is sent (DTX - Discontinuous Transmission).
	Range: -1 to 30
	*RST: 1
Example:	BB:W3GP:MST1:DPCC:HS:CQI:PLEN 2
	the CQI sequence length is 2 values.
	BB:W3GP:MST1:DPCC:HS:CQI1 1
	the first CQI value is -1.
	BB:W3GP:MST1:DPCC:HS:CQI2 2
	the second CQI value is 2.
Manual operation:	See "CQI Values" on page 202

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO[:MODE] <Mode>

Enables/disables working in MIMO mode for the selected UE.

Parameters: <mode></mode>	0 1 OFF ON *RST: 0
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON enables MIMO mode for UE 1.
Options:	R&S SMW-K83
Manual operation:	See "MIMO Mode (Up to Release 7)" on page 203

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POAAck <PoaAck>

(up to Release 7)

Sets the power offset $P_{off_ACK/ACK}$ of an ACK/ACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} ([:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPCCh:HS:POWer).

The power PACK/ACK used during the HARQ-ACK slots is calculated as:

 $P_{ACK/ACK} = P_{CQI} + P_{off_ACK/ACK}$

Parameters:

<poaack></poaack>	float	
	•	-10 to 10 dB
	Increment: *RST:	0.1 0 dB
	ROI.	UUB
Example:	BB:W3GP:N	AST1:DPCC:HS:MIMO:MODE ON
-	enables MI	MO mode for UE 1.
	BB:W3GP:N	AST1:DPCC:HS:MIMO:TTI2:HACK AACK
	sets the HA	RQ-ACK to ACK/ACK.
	BB:W3GP:N	AST1:DPCC:HS:MIMO:POAA -2.5dB
	sets the pov	wer offset to -2.5 dB.
Options:	R&S SMW-	K83
Manual operation:	See "Power	Offset ACK/ACK" on page 204

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POANack <PoaNack>

(up to Release 7)

Sets the power offset $P_{off_ACK/NACK}$ of an ACK/NACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} ([:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPCCh:HS:POWer).

The power P_{ACK/NACK} used during the HARQ-ACK slots is calculated as:

 $P_{ACK/NACK} = P_{CQI} + P_{off_{ACK/NACK}}$

Parameters: <poanack></poanack>	float	
	Range: Increment: *RST:	-10 to 10 dB 0.1 0 dB
Example:	enables MII BB:W3GP:M sets the HA BB:W3GP:M	AST1:DPCC:HS:MIMO:MODE ON MO mode for UE 1. AST1:DPCC:HS:MIMO:TTI2:HACK ANAC RQ-ACK to ACK/NACK. AST1:DPCC:HS:MIMO:POAN -1.5dB wer offset to -1.5 dB.
Options:	R&S SMW-	K83
Manual operation:	See "Power	Offset ACK/NACK" on page 204

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONAck <PoNack>

(up to Release 7)

Sets the power offset $P_{off_NACK/ACK}$ of an NACK/ACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} ([:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPCCh:HS:POWer).

The power P_{NACK/ACK} used during the HARQ-ACK slots is calculated as:

 $P_{NACK/ACK} = P_{CQI} + P_{off_NACK/ACK}$

Parameters: <ponack></ponack>	float Range: -10 to 10 dB Increment: 0.1 *RST: 0 dB
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON enables MIMO mode for UE 1. BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:HACK NACK sets the HARQ-ACK to NACK/ACK. BB:W3GP:MST1:DPCC:HS:MIMO:PONA -1dB sets the power offset to -1dB.
Options:	R&S SMW-K83
Manual operation:	See "Power Offset NACK/ACK" on page 205

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONNack <PonNack>

(up to Release 7)

Sets the power offset $P_{off_NACK/NACK}$ of an NACK/NACK response to two scheduled transport blocks relative to the CQI Power P_{CQI} ([:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPCCh:HS:POWer).

The power P_{NACK/NACK} used during the HARQ-ACK slots is calculated as:

 $P_{NACK/NACK} = P_{CQI} + P_{off_NACK/NACK}$

Parameters:

<ponnack></ponnack>	float	
	Range: Increment: *RST:	-10 to 10 dB 0.1 0 dB
Example:	enables MIN BB:W3GP:M sets the HA BB:W3GP:M	MST1:DPCC:HS:MIMO:MODE ON MO mode for UE 1. MST1:DPCC:HS:MIMO:TTI2:HACK NNAC RQ-ACK to NACK/NACK. MST1:DPCC:HS:MIMO:PONN -3dB wer offset to -3dB.

Options: R&S SMW-K83

Manual operation: See "Power Offset NACK/NACK" on page 205

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POCA <Poca>

(up to Release 7)

Sets the power offset $P_{off_CQI Type A}$ of the PCI/CQI slots in case a CQI Type A report is sent relative to the CQI Power P_{CQI} ([:SOURce<hw>]:BB:W3GPp:MSTation<st>: DPCCh:HS:POWer).

The power P_{CQI Type A} used during the PCI/CQI slots is calculated as:

P_{CQI Type A} = P_{CQI} + P_{off_CQI Type A}

Since the CQI Type B reports are used in a single stream transmission, the power P_{CQI} Type B = P_{CQI} .

Parameters:

<poca></poca>	float	
	Range: Increment: *RST:	-10 dB to 10 dB 0.1 0 dB
Example:	enables MIN BB:W3GP:M selects CQI BB:W3GP:M	MST1:DPCC:HS:MIMO:MODE ON MO mode for UE 1. MST1:DPCC:HS:MIMO:MODE:TT2:CQIT TADT Type A Dual TB report for TTI2. MST1:DPCC:HS:MIMO:POCA -4dB wer offset to -4dB.
Options:	R&S SMW-	K83
Manual operation:	See "Power	Offset CQI Type A" on page 205

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTICount <TtiCount>

Selects the number of configurable TTI's.

Parameters:

<tticount></tticount>	integer
	Range: 1 to 32 *RST: 1
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON enables MIMO mode for UE 1. BB:W3GP:MST1:DPCC:HS:MIMO:TTIC 4 sets the number of configurable TTI's to 4.
Options:	R&S SMW-K83
Manual operation:	See "Number of TTIs (Up to Release 7)" on page 205

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK <Hack>

Selects the information transmitted during the HARQ-ACK slot of the corresponding TTI.

Suffix: <ch0></ch0>	0Number of TTI -1	
Parameters: <hack></hack>	DTX SACK SNACk AACK ANACk NACK NNACk *RST: AACK (for TTI 1)	
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON enables MIMO mode for UE 1. BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:HACK SACK sets the HARQ-ACK to single ACK.	
Options:	R&S SMW-K83	
Manual operation:	See "HARQ-ACK (Up to Release 7)" on page 206	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI<Pci>

Selects the PCI value transmitted during the PCI/CQI slots of the corresponding TTI.

Suffix: <ch0></ch0>	0Number of TTI -1	
Parameters: <pci></pci>	integer Range: 0 to 3 *RST: 0	
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON enables MIMO mode for UE 1. BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:HACK SACK sets the HARQ-ACK to single ACK. BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:PCI 2 sets the PCI.	
Options:	R&S SMW-K83	
Manual operation:	See "PCI (Up to Release 7)" on page 206	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQIType <CqiType>

Selects the type of the CQI report.

Suffix:

<ch0> 0..Number of TTI -1

Parameters: <cqitype></cqitype>	TAST TADT TB *RST: TADT
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON enables MIMO mode for UE 1. BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:HACK SACK sets the HARQ-ACK to single ACK. BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQIT TADT selects CQI Type A dual TB report for TTI2.
Options:	R&S SMW-K83
Manual operation:	See "CQI Type (Up to Release 7)" on page 206

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQI<di><Cqi>

Selects the CQI report transmitted during the PCI/CQI slots of the corresponding TTI.

For single stream transmission (BB:W3GP:MST:DPCC:HS:MIMO:TTI:CQI1), this command set the CQI values of the following cases:

- The CQI (the value for CQI Type B report)
- The CQI_s (the CQI value in case a CQI Type A report when 1 transport block is preferred)

For dual stream transmission (BB:W3GP:MST:DPCC:HS:MIMO:TTI:CQI2), this command sets:

- The CQI₁, the first of the two CQI values of CQI Type A report when 2 transport blocks are preferred
- the CQI₂, the second of the two CQI values of CQI Type A report when 2 transport blocks are preferred. The CQI then is calculated as follow: CQI = 15*CQI₁+CQI₂+31

Suffix:

<ch0></ch0>	0Number of TTI -1 TTI	
<di></di>	1 2 The suffix CQI<1 2> distinguishes between CQI/CQI _S /CQI ₁ and CQI ₂ .	
Parameters:		
<cqi></cqi>	integer	
	Range: 0 to 30	
	*RST: 0	

Example:	BB:W3GP:MST1:DPCC:HS:MIMO:MODE ON
	enables MIMO mode for UE 1.
	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:HACK SACK
	sets the HARQ-ACK to single ACK.
	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQIT TADT
	selects CQI Type A dual TB report for TTI2.
	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQI1 1.5
	sets CQI1
	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQI2 2
	sets CQI2
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQIT TAST
	selects CQI Type A single TB report for TTI2.
	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQI1 3
	sets CQIS
Example:	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQIT TB
Example	selects CQI Type B
	BB:W3GP:MST1:DPCC:HS:MIMO:TTI2:CQI1 0
	sets CQI
Options:	R&S SMW-K83
Manual operation:	See "CQI/CQI _S /CQI ₁ /CQI ₂ (Up to Release 7)" on page 206
	our

8.9.4.3 Release 8 and Later (RT) Settings

Example: HS-DPCCH Scheduling

The following is a simple example intended to explain the principle. Configured is an HS-DPCCH scheduling in MIMO Mode and with "Secondary Cell Enabled = 1".

```
BB:W3GP:MST1:DPCC:HS:COMP REL8
BB:W3GP:MST1:DPCC:HS:TTID 5
BB:W3GP:MST1:DPCC:HS:MMOD ON
BB:W3GP:MST1:DPCC:HS:SC:ENABled 1
BB:W3GP:MST1:DPCC:HS:SC:ACT 0
BB:W3GP:MST1:DPCC:HS:HACK:ROWS 2
BB:W3GP:MST1:DPCC:HS:HACK:REPeat 4
BB:W3GP:MST1:DPCC:HS:ROW0:HACK:FROM 0
BB:W3GP:MST1:DPCC:HS:ROW0:HACK:TO 1
BB:W3GP:MST1:DPCC:HS:ROW0:HACK1 MS AA D
BB:W3GP:MST1:DPCC:HS:ROW1:HACK:FROM 3
BB:W3GP:MST1:DPCC:HS:ROW1:HACK:TO 3
BB:W3GP:MST1:DPCC:HS:ROW1:HACK1 MS NN NN
BB:W3GP:MST1:DPCC:HS:PCQI:ROWS 2
BB:W3GP:MST1:DPCC:HS:PCQI:REPeat 3
BB:W3GP:MST1:DPCC:HS:ROW0:PCQI:FROM 0
BB:W3GP:MST1:DPCC:HS:ROW0:PCQI:TO 0
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI1:TYPE DTX
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI:FROM 1
```

```
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI:TO 1
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI1:TYPE TADT
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI1:CQI1 10
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI1:CQI2 20
BB:W3GP:MST1:DPCC:HS:ROW1:PCQI1:PCI 2
BB:W3GP:MST1:DPCC:HS:STAT ON
```

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SFORmat?</st></hw>	472
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe</st></hw>	472
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ENABled</st></hw>	473
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ACTive</st></hw>	473
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:ROWS</st></hw>	473
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:ROWS</st></hw>	473
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM</ch0></st></hw>	474
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO</ch0></st></hw>	474
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK<di></di></ch0></st></hw>	474
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHAck</ch0></st></hw>	475
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:FROM</ch0></st></hw>	476
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO</ch0></st></hw>	476
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:TYPE</di></ch0></st></hw>	476
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:CQI<us></us></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:PCI</di></ch0></st></hw>	477
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPCqi</ch0></st></hw>	477
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:REPeat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:REPeat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth:ADJust</st></hw>	479

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SFORmat?

Queries the used slot format.

Return values:		
<slotformat></slotformat>	integer	
	Range: *RST:	0 to 1 0
Usage:	Query only	
Options:	R&S SMW-I	K83
Manual operation:	See "Slot Fo	ormat" on page 192

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe <MMode>

(Release 8 and Later, Release 8 and Later (RT)

Enables/disables working in MIMO mode for the selected UE.

Parameters:

<MMode>

0 | 1 | OFF | ON *RST: 0

User Equipment Settings

Example:	see Example "HS-DPCCH Scheduling" on page 471
Options:	R&S SMW-K83
Manual operation:	See "MIMO Mode" on page 193

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ENABled <SecCellEnabled>

Enables the selected number of secondary cells for the selected UE.

Parameters:		
<seccellenabled></seccellenabled>	integer	
	Range: *RST:	0 to 7 0
Example:	see Example "HS-DPCCH Scheduling" on page 471	
Options:	R&S SMW-K83	
Manual operation:	See "Secondary Cell Enabled" on page 193	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ACTive <SecCellActive>

(Release 8 and Later)

Sets the number of active secondary cells for the selected UE.

Parameters: <seccellactive></seccellactive>	integer Range:	0 to 7
	*RST:	0
Example:	see Example "HS-DPCCH Scheduling" on page 471	
Options:	R&S SMW-K83	
Manual operation:	See "Secondary Cell Active" on page 194	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:ROWS <RowCount> [:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:ROWS <RowCount>

Determines the number of the rows in the HARQ-ACK respectively in the PCI/CQI scheduling table.

Parameters:

i alameters.		
<rowcount></rowcount>	integer	
	Range: *RST:	1 to 32 1
Example:	see Example "HS-DPCCH Scheduling" on page 471	
Options:	R&S SMW-I	<83

Manual operation: See "Number of Rows" on page 197

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM <HackFrom>

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO <HackTo>

(Release 8 and Later)

Defines the beginning / end of the HARQ-ACK transmissions inside the HARQ-ACK cycle (specified by HARQ ACK Repeat After). The range is specified in multiples of intervals (Inter TTI distace).

Suffix: <ch0>

0..<RowCount>

Parameters: <hackto></hackto>	integer Range: *RST:	0 to dynamic row index
Example:	see Example "HS-DPCCH Scheduling" on page 471	
Options:	R&S SMW-K83	
Manual operation:	See "HARQ-ACK From Interval/ HARQ-ACK To Interval" on page 194	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK<di> <HarqAck>

(Release 8 and Later)

Sets the information transmitted during the HARQ-ACK slots of the TTIs during the corresponding specified HARQ-ACK From/To range.

For detailed description, see "HS-DPCCH 1/2, HARQ-ACK 1/2/3/4" on page 195. The Table 8-1 provides the neccessary cross-reference information.

Table 8-1: Cross-reference between the used GUI terms and abbreviations in the SCPI command

Value name	Parameter value
"DTX"	DTX D_DTX
"PRE, POST"	PRE POST
"A, N"	A N
"AA, AN, NA, NN"	M_A M_N M_AA M_AN M_NA M_NN
"A/D, N/A, " (different combinations possible)	S_A_D S_N_A (different combinations possible)

Value name	Parameter value
"A/D/D, N/D/D, "	S2_N_N_N S2_N_N_A
(different combinations possible)	(different combinations possible)
"AN/NN, D/AA, "	MS_AA_AA MS_D_AA
(different combinations possible)	(different combinations possible)

Suffix: <ch0>

0..<RowCount>

Parameters:

<harqack></harqack>	DTX PRE POST A N M_A M_N M_AA M_AN M_NA M_NN S_A_D S_N_D S_D_A S_D_N S_A_A S_A_N S_N_A S_N_N MS_A_D MS_N_D MS_AA_D MS_AN_D MS_NA_D MS_NN_D MS_D_A MS_D_N MS_D_AA MS_D_AN MS_D_NA MS_D_NN MS_A_A MS_A_N MS_N_A MS_N_N MS_A_AA MS_A_AN MS_N_NA MS_A_NN MS_N_AA MS_N_AN MS_N_NA MS_N_AA MS_AA_A MS_AA_N MS_AN_A MS_AA_AA MS_AA_A MS_AA_N MS_AA_N MS_AA_AA MS_AA_A MS_AA_NA MS_AA_NN MS_NA_A MS_NA_N MS_AA_NA MS_AA_NN MS_AA_AA MS_AA_AN MS_AA_NA MS_AA_NN MS_NA_AA MS_NA_AN MS_NA_NA MS_NA_NN MS_NA_AA MS_NA_AN MS_NA_NA MS_NA_NN MS_NA_AA MS_NA_AN MS_NA_NA MS_NA_NN S2_A_D_D S2_N_D_D S2_D_A_D S2_D_N_D S2_N_D_A S2_N_D_N S2_A_A_A S2_A_AN S2_A_N_A S2_N_D_N S2_A_AA S2_A_AN S2_A_N_A S2_A_N_N S2_A_AA S2_A_AN S2_A_N_A S2_A_N_N S2_A_AA S2_A_AN S2_A_N_A S2_A_N_N S2_N_AA S2_N_AN S2_A_N_A S2_A_N_N S2_N_AA S2_N_AN S2_N_A S2_A_N_N S2_N_AA S2_N_AN S2_N_A S2_A_N_N S2_N_AA S2_N_AN S2_N_A S2_A_N_N S2_N_AA S2_N_AN S2_N_A S2_N N N D DTX
Example:	see Example "HS-DPCCH Scheduling" on page 471
Options:	R&S SMW-K83
-	See "HS-DPCCH 1/2, HARQ-ACK 1/2/3/4" on page 195
manual operation.	See the bill continue, infine hold in page 130

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHAck <PoHack>

(Release 8 and Later)

Sets the power offset of a HARQ-ACK response relative to the [:SOURce<hw>]:BB: W3GPp:MSTation<st>:DPCCh:HS:POWer.

Suffix:

<ch0>

0..<RowCount>

Parameters: <pohack></pohack>	float	
	Range: Increment: *RST:	
Options:	R&S SMW-	K83
Manual operation:	See "Power	Offset HARQ-ACK" on page 196

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:FROM <PcqiFrom>

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO <PcqiTo>

(Release 8 and Later)

Defines the beginning / end of the PCI/CQI transmissions inside the PCI/CQI cycle (specified by PCI/CQI Repeat After). The range is specified in multiples of intervals (Inter TTI distace).

Suffix:

<ch0>

0..<RowCount>

Parameters:	
-------------	--

i alameters.		
<pcqito></pcqito>	integer	
	Range: *RST:	0 to dynamic row index
Example:	see Examp	le "HS-DPCCH Scheduling" on page 471
Options:	R&S SMW-	K83
Manual operation:	See "PCI-C	QI From Interval/ PCI-CQI To Interval" on page 197

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>: TYPE <CqiType>

Selects the type of the PCI/CQI report.

Suffix:

<ch0> 0..<RowCount>

Parameters:

<CqiType> DTX | CQI | TAST | TADT | TB | CCQI TAST|TADT Type A Single TB, Type A Double TB TB Type B CCQI

Composite CQI

Example: see Example "HS-DPCCH Scheduling" on page 471

Options: R&S SMW-K83

Manual operation: See "HS-DPCCH 1/2, PCI/CQI 1/2/3/4 Type" on page 198

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>: CQI<us> <Cqi>

Parameters:

<cqi></cqi>	integer		
	Range: *RST:	0 to 30 0	
Example:	see Example "HS-DPCCH Scheduling" on page 471		
Options:	R&S SMW-	K83	
Manual operation:	See "CQI/C	Ql _S /CQl ₁ /CQl ₂ " on page 199	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:PCI <PCI>

Suffix: <ch0></ch0>	0 <rowcou< th=""><th>int></th></rowcou<>	int>
Parameters: <pci></pci>	integer Range: *RST:	0 to 3 0
Example: Manual operation:		e "HS-DPCCH Scheduling" on page 471 n page 199

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPCqi <PoPcqi>

(Release 8 and Later)

Sets the power offset P_{off_PCI/CQI} of all PCI/CQI slots during the corresponding specified PCI/CQI From/To range relative to the [:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPCCh:HS:POWer.

Suffix:

<ch0>

Parameters: <popcqi></popcqi>	float	
	Range: Increment: *RST:	
Options:	R&S SMW-	K83

0..<RowCount>

Manual operation: See "Power Offset PCI/CQI" on page 198

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:REPeat <HackRep>

Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.

Parameters: <hackrep></hackrep>	integer
	Range: 1 to dynamic
Example:	see Example "HS-DPCCH Scheduling" on page 471
Manual operation:	See "HARQ-ACK Repeat After" on page 194

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:REPeat <PcqiRep>

(Release 8 and Later)

Defines the cycle length after that the information in the HS-DPCCH scheduling table is read out again from the beginning.

Parameters: <pcqirep></pcqirep>	integer Range: *RST:	1 to dynamic 1
Example:	see Example	e "HS-DPCCH Scheduling" on page 471
Manual operation:	See "PCI/C	QI Repeat After" on page 197

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth?

(Release 8 and Later)

Queries the suggested and current ARB sequence length.

The current ARB sequence length is adjusted with the command [:SOURce<hw>]: BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth:ADJust on page 479.

Return values:

<slength></slength>	float
Example:	BB:W3GP:MST1:DPCC:HS:SLEN? queries the ARB sequence length
Usage:	Query only
Options:	R&S SMW-K83
Manual operation:	See "Suggested / Current ARB Seq. Length (HS-DPCCH)" on page 199

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth:ADJust

(Release 8 and Later)

Sets the current ARB sequence length to the suggested value.

Example:	BB:W3GP:MST1:DPCC:HS:SLEN:ADJ adjusts the ARB sequence length
Usage:	Event
Options:	R&S SMW-K83
Manual operation:	See "Adjust ARB Sequence Length (HS-DPCCH)" on page 201

8.9.5 DPDCH Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:CCODe?</ch></st></hw>	479
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA</ch></st></hw>	479
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:DSELect</ch></st></hw>	480
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:PATTern</ch></st></hw>	480
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:SRATe?</ch></st></hw>	481
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:FCIO</st></hw>	481
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:ORATe</st></hw>	481
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:POWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:STATe</st></hw>	482

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:CCODe?

The command queries the channelization code of the specified channel. The value is fixed and depends on the overall symbol rate of the user equipment.

Return values: <ccode></ccode>	float
Example:	BB:W3GP:MST1:CHAN:DPDC:CCOD? queries the channelization code for DPDCH 1 of user equipment 1.
Usage:	Query only
Manual operation:	See "Channelization Code" on page 183

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA <Data>

The command determines the data source for the selected DPDCH.

For the enhanced channels of user equipment 1 (UE1), this entry is valid when channel coding is deactivated. When channel coding is active, data sources are selected for the transport channels with the commands :BB:W3GPp:MST:CHANnel:DPDCh:DCCH: DATA and :BB:W3GPp:MST:ENHanced:TCHannel:DATA.

Parameters:			
<data></data>	PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt ZERO ONE PATTern		
	PNxx		
	The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.		
	DLISt		
	A data list is used. The data list is selected with the command		
	[:SOURce <hw>]:BB:W3GPp:MSTation<st>:</st></hw>		
	CHANnel <ch>:DPDCh:DATA:DSELect.</ch>		
	ZERO ONE Internal 0 and 1 data is used.		
	PATTern Internal data is used The bit pattern for the data is defined by the command [:SOURce <hw>]:BB:W3GPp:MSTation<st>: CHANnel<ch>:DPDCh:DATA:PATTern.</ch></st></hw>		
	*RST: PN9		
Example:	BB:W3GP:MST1:CHAN:DPDC:DATA PN11 selects internal PRBS data with period length 2 ¹¹ -1 as the data source.		
Manual operation:	See "DPDCH Data Source" on page 184		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source selection.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	<data list="" name=""></data>
Example:	BB:W3GP:MST1:CHAN1:DPDC:DATA DLIS selects the Data Lists data source. MMEM:CDIR '/var/user/temp/IQData'
	selects the directory for the data lists. BB:W3GP:MST1:CHAN1:DPDC:DATA:DSEL 'dpdch_13' selects the file dpdch_13 as the data source.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA:PATTern <Pattern>

The command enters the bit pattern for the PATTern data source selection. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:		
<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:	selects the	AST1:CHAN1:DPDC:DATA PATT Pattern data source. AST1:CHAN1:DPDC:DATA:PATT #H3F, 8 bit pattern.
Manual operation:	See "DPDC	H Data Source" on page 184

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:SRATe?

The command queries the symbol rate of the DPDCH. The symbol rate depends on the overall symbol rate set and cannot be modified.

Return values: <srate></srate>	D15K D30K D60K D120k D240k D480k D960k
Example:	BB:W3GP:MST4:CHAN2:DPDC:SRAT? queries the symbol rate of DPDCH 2 of user equipment 4. Response: 960 the symbol rate is 960 ksps. Note: DPDCH 2 is only active once the overall symbol rate is 2 x 960 ksps or more. When overall symbol rates are less, the error message "???" is returned.
Usage:	Query only
Manual operation:	See "Symbol Rate / State" on page 183

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:FCIO <Fcio>

The command sets the channelization code to I/0. This mode can only be activated if the overall symbol rate is < 2 x 960 kbps.

Parameters: <fcio></fcio>	ON OFF *RST: OFF		
Example:	BB:W3GP:MST1:DPDC:FCIO ON sets the channelization code to I/O.		
Manual operation:	See "Force Channelization Code To I/0" on page 182		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:ORATe <ORate>

The command sets the overall symbol rate. The overall symbol rate determines the number of DPDCHs as well as their symbol rate and channelization codes.

Parameters: <orate></orate>	D15K D30K D60K D120k D240k D480k D960k D1920k D2880k D3840k D4800k D5760k		
	D15K D5760K 15 ksps 6 x 960 ksps *RST: D60K		
Example:	BB:W3GP:MST1:DPDC:ORAT D15K sets the overall symbol rate to 15 ksps. Only DPDCH1 is active, the symbol rate is 15 ksps and the channelization code is 64.		
Manual operation:	See "Overall Symbol Rate" on page 182		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:POWer <Power>

The command defines the channel power of the DPDCHs. The power entered is relative to the powers of the other channels. If "Adjust Total Power to 0 dB" is executed ([: SOURce<hw>]:BB:W3GPp:POWer:ADJust), the power is normalized to a total power for all channels of 0 dB. The power ratios of the individual channels remains unchanged.

Note: The uplink channels are not blanked in this mode (duty cycle 100%).

Parameters:

<power></power>	float		
	Range: Increment: *RST:	-80 dB to 0 dB 0.01 dB 0 dB	
Example:	sets the cha dB. The cha nels. BB:W3GP:E	AST4:DPDC:POW -60dB annel power for DPDCH 2 of user equipment 4 to -60 annel power relates to the power of the other chan- POW:ADJ power relates to 0 dB.	
Manual operation:	See "Chann	el Power" on page 181	

Manual operation: See "Channel Power" on page 181

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:DPDCh:STATe <State>

The command activates or deactivates DPDCHs. This always activates or deactivates all the channels. The number of channels (1...6) is determined by the overall symbol rate.

Parameters:

<state></state>	ON OFF	
	*RST:	OFF
Example:		MST1:DPDC:STAT ON I the DPDCHs.
Manual operation:	See "State	(DPDCH)" on page 181

8.9.6 PCPCH Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPOWer</st></hw>	483
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPSFormat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:PATTern</st></hw>	485
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:MODE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:MLENgth</st></hw>	486
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PLENgth</st></hw>	486
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer</st></hw>	487
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer:STEP</st></hw>	487
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PREPetition</st></hw>	487
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:RAFTer</st></hw>	488
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:RARB</st></hw>	488
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:SIGNature</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:SRATe</st></hw>	489
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TFCI</st></hw>	489
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:MPARt?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:PREamble?</st></hw>	490
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SOFFset</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SPERiod?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREMp</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREPre</st></hw>	491
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA</st></hw>	492
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:READ</st></hw>	493

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPOWer <CPower>

The command defines the power of the control component of the PCPCH.

Parameters:

<cpower></cpower>	float	
	Range: Increment: *RST:	-80 dB to 0 dB 0.1 dB 0 dB
Example:	BB:W3GP:MST1:PCPC:CPOW -10 dB sets the power to -10 dB.	
Manual operation:	See "Control Power" on page 255	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPSFormat <CpSFormat>

The command defines the slot format of the control component of the PCPCH.

The slot format sets the associated FBI mode automatically:

- Slot format 0 = FBI OFF
- Slot format 1 = FBI 1 bit
- Slot format 2 = FBI 2 bits

Parameters:

<cpsformat></cpsformat>	integer	
	Range: *RST:	0 to 2 0
Example:	BB:W3GP:MST1:PCPC:CPSF 2 sets slot format 2.	
Manual operation:	See "Slot Format" on page 255	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA <Data>

The command determines the data source for the PCPCH.

Parameters:

<data></data>	ZERO ONE PATTern PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt
	PNxx
	The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.
	DLISt
	A data list is used. The data list is selected with the command
	SOURce:BB:W3GPp:MST:PCPCh:DATA:DSELect[:
	SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:</st></hw>
	DSELect.
	ZERO ONE Internal 0 and 1 data is used.
	PATTern
	<pre>Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>: PCPCh:DATA:PATTern.</st></hw></pre>
	*RST: PN9
Example:	BB:W3GP:MST1:PCPC:DATA PN11 selects internal PRBS data with period length 2^11-1 as the data source.
Manual operation:	See "Data Source" on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	string
Example:	<pre>BB:W3GP:MST1:PCPC:DATA DLIS selects data lists as the data source. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST1:PCPC:DATA:DSEL 'pcpch_data' selects the data list pcpch_data.</pre>
Manual operation:	See "Data Source" on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:PATTern <Pattern>

The command determines the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexa-decimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:		
<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:		MST: PCPC: DATA: PATT #H3F, 8 bit pattern of the data for the DATA component.
Manual operation:	See "Data	Source" on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:DPOWer <DPower>

The command defines the power of the data component of the PCPCH.

Parameters:

<dpower></dpower>	float		
	Range: Increment: *RST:	-80 dB to 0 dB 0.1 dB 0 dB	
Example:	BB:W3GP:MST1:PCPC:DPOW -10 dB sets the power to -10 dB.		
Manual operation:	See "Data Power" on page 254		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:MODE <Mode>

The command sets the number of bits (1 or 2) for the FBI field. With OFF, the field is not used.

The FBI pattern automatically sets the associated slot format:

- FBI OFF = Slot format 0
- FBI 1 bit = Slot format 1
- FBI 2 bits = Slot format 2

Parameters:			
<mode></mode>	OFF D1B D2B		
	*RST:	OFF	
Example:	BB:W3GP:MST2:PCPC:FBI:MODE OFE the FBI field is not used.		OFF
Manual operation:	See "FBI Mode" on page 255		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:PATTern <Pattern>

The command determines the bit pattern for the FBI field when the PATTern data source is selected. The maximum length of the pattern is 32 bits. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:		
<pattern></pattern>	32 bits	
	*RST: #H0,1	
Example:	BB:W3GP:MST1:PCPC:FBI:PATT #H3F,8 defines the bit pattern of the data for the FBI field.	
Manual operation:	See "FBI Pattern" on page 255	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:MLENgth <MLength>

The command sets the length of the message component as a number of frames.

Parameters: <mlength></mlength>	1 2 Frames	5
	Range: *RST:	1 to 2 1 Frame
Example:	BB:W3GP:MST4:PCPC:MLEN 2 the length of the message component is 2 frames.	
Manual operation:	See "Message Length" on page 255	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PLENgth <PLength>

The command defines the length of the power control preamble of the PCPCH as a number of slots.

Parameters:

<PLength>

S0 | S8 *RST: S8

 Example:
 BB:W3GP:MST1:PCPC:PLEN_S8 sets a length of 8 slots for the power control preamble.

 Manual operation:
 See "Power Control Preamble Length" on page 253

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer < PPower>

The command defines the power of the preamble component of the PCPCH. If the preamble is repeated and the power increased with each repetition, this setting specifies the power achieved during the last repetition.

Parameters:

<ppower></ppower>	float	
	Range: -80 dB to 0 d Increment: 0.1 dB *RST: 0 dB	В
Example:	BB:W3GP:MST1:PCPC:PR	OW:STEP 1 dB of 1 dB per preamble repetition. EP 2 nbles. The power of the first preamble
Manual operation:	See "Preamble Power" on	bage 253

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer:STEP <Step>

The command defines the step width of the power increase, by which the preamble component of the PCPCH is increased from repetition to repetition. The power during the last repetition corresponds to the power defined by the command [: SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer.

Parameters:

<step></step>	float	
	Range: Increment: *RST:	0 dB to 10 dB 0.1 dB 0 dB
Example:		AST1:PCPC:PPOW:STEP 2dB f the PCPCH preamble is increased by 2 dB with ition.
Manual operation:	See "Pream	ble Power Step" on page 253

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:PREPetition <PRepetition>

The command defines the number of PCPCH preamble components.

Parameters: <prepetition></prepetition>	- 0-	1 to 10
	*RST:	1
Example:	BB:W3GP:MST1:PCPC:PREP 3 sets three preamble components.	
Manual operation:	See "Preamble Repetition" on page 253	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RAFTer <Repeatafter>

Sets the number of access slots after that the PCPCH structure will be repeated.

Parameters: <repeatafter></repeatafter>	integer Range: *RST:	1 to 1000 18
Example:	see [:SOUR RARB on pa	<pre>Rce<hw>]:BB:W3GPp:MSTation<st>:PCPCh: ge 488</st></hw></pre>
Manual operation:	See "Repea	at Structure After (x Acc. Slots)" on page 252

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:RARB <State>

Enables/disables repeating the selected PCPCH structure during one ARB sequence.

Parameters:	
<state></state>	0 1 OFF ON
	ON
	Within one ARB sequence, the selected PCPCH structure is repeated once.
	OFF
	The selected PCPCH structure can be repeated several time, depending on the structure length ([:SOURce <hw>]:BB:</hw>
	W3GPp:MSTation <st>:PRACh:TIMing:SPERiod?) and the</st>
	[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:</st></hw>
	RAFTer.
	*RST: 1
Example:	SOURce1:BB:W3GPp:SLENgth 4
	SOURce1:BB:W3GPp:MSTation3:PCPCh:TIMing: SPERiod?
	Response: 14
	SOURce1:BB:W3GPp:MSTation1:PCPCh:RARB OFF
	SOURce1:BB:W3GPp:MSTation1:PCPCh:RAFTer 20
Manual operation:	See "Repeat Structure After ARB Sequence Length" on page 252

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:SIGNature <Signature>

The command selects the signature of the PCPCH (see Table 3 in 3GPP TS 25.213 Version 3.4.0 Release 1999).

Parameters:

Manual operation:

<signature></signature>	integer	
	Range: *RST:	0 to 15 0
Example:	BB:W3GP:M selects sign	4ST1:PCPC:SIGN 5 ature 5.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:SRATe <SRate>

See "Signature" on page 254

The command sets the symbol rate of the PCPCH.

User Equipment 1: When channel coding is active, the symbol rate is limited to the range between 15 and 120 ksps. Values above this limit are automatically set to 120 ksps.

Parameters:

<srate></srate>	D15K D30K D60K D120k D240k D480k D960k *RST: D30K
Example:	BB:W3GP:MST1:PCPC:SRAT D15K sets the symbol rate of the PCPCH of user equipment 1 to 15 ksps.
Manual operation:	See "Symbol Rate" on page 255

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TFCI <Tfci>

Sets the value of the TFCI (Transport Format Combination Indicator) field. This value selects a combination of 30 bits, which are divided into two groups of 15 successive slots.

Parameters:

<tfci></tfci>	integer	
	Range: *RST:	0 to 1023 0
Example:		AST1:PCPC:TFCI 21 Cl value to 21.
Manual operation:	See "TFCI"	on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:MPARt?

Queries the level correction value for the message part. In case of one UE active, the power of the message part can be calculated by adding the set RF level.

Return values: <mpart></mpart>	float Range: -80 to 0 Increment: 0.01 *RST: 0
Example:	BB:W3GP:MST3:PCPC:TIM:DPOW:MPAR? queries the level correction value for the message part. Response: 1.2 the correction value is 1.2 dB. POW? queries the RF level. Response: 2 the RF output level is 2 dBm. The message part power is 3.2 dBm
Usage:	Query only
Manual operation:	See "Delta Power (Message Part)" on page 250

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:PREamble?

Queries level correction value for the last AICH preamble before the message part. This value is identical to the correction value for the CD preamble. The level of the other preambles can be calculated by subtracting the set Preamble Power Step.

Return	values:	
--------	---------	--

<preamble></preamble>	float	
	Range: Increment: *RST:	-80 to 0 0.01 0
Example:	BB:W3GP:MST3:PCPC:TIM:DPOW:PRE? queries the level correction value for the last AICH preamble before the message part.	
Usage:	Query only	
Manual operation:	See "Delta Power (Preamble)" on page 250	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SOFFset <SOffset>

This command defines the start offset of the PCPCH in access slots. The starting time delay in timeslots is calculated according to: 2 x Start Offset.

Parameters: <soffset></soffset>	integer	
	Range: *RST:	1 to 14 0
Example:		AST3:PCPC:TIM:SOFF 1 set of the PCPCH of UE 3 is 2 access slots.

Manual operation: See "Start Offset #" on page 250

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SPERiod?

Queries the structure lentgh.

Return values: <speriod></speriod>	float
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh: RARB on page 488</st></hw></pre>
Usage:	Query only
Manual operation:	See "Structure Length" on page 251

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREMp <Premp>

This command defines the AICH Transmission Timing. This parameter defines the time difference between the preamble and the message part. Two modes are defined in the standard. In mode 0, the preamble to message part difference is 3 access slots, in mode 1 it is 4 access slots.

Parameters:

<premp></premp>	integer Range: *RST:	1 to 14 3
Example:		MST3:PCPC:TIM:TIME:PREM 3 ce between the preamble and the message part is 3 S.
Manual operation:	See "Transr	mission Timing (Message Part)" on page 251

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREPre <Prepre>

This command defines the time difference between two successive preambles in access slots.

Parameters:

<prepre></prepre>	integer	
	Range: *RST:	1 to 14 3
Example:		MST3:PCPC:TIM:TIME:PREP 3 Ference between two successive preambles is 3 s.
Manual operation:	See "Transi	mission Timing (Preamble)" on page 251

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA <Data>

The command determines the data source for the TPC field of the PCPCH.

Parameters:

<Data>

ZERO | ONE | PATTern | DLISt

DLISt

A data list is used. The data list is selected with the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC: DATA:DSELect.

ZERO | ONE

Internal 0 and 1 data is used.

PATTern

Internal data is used. The bit pattern for the data is defined by the command [:SOURce<hw>]:BB:W3GPp:MSTation<st>: PCPCh:TPC:DATA:PATTern. The maximum length is 64 bits. *RST: PATTern

- Example:BB:W3GP:MST2:PCPC:TPC:DATA PATT
selects as the data source for the TPC field of user equipment 2
the bit pattern defined with the following command.
BB:W3GP:MST2:PCPC:TPC:DATA:PATT #H48D0,16
defines the bit pattern.
- Manual operation: See "TPC Data Source" on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:DSELect <DSelect>

The command selects the data list when the DLISt data source is selected for the TPC field of the PCPCH.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

Manual anavation.	Cae "TDC Date Course" on nego 256
	<pre>MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST1:PCPC:TPC:DATA:DSEL 'dpcch_tpc_1' selects the data list dpcch_tpc1.</pre>
Example:	BB:W3GP:MST1:PCPC:TPC:DATA DLIS selects data lists as the data source.
<dselect></dselect>	string

Manual operation: See "TPC Data Source" on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:PATTern <Pattern>

The command determines the bit pattern for the PATTern data source selection. The maximum length of the bit pattern is 64 bits.

Parameters:

<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:		MST1:PCPC:DATA:PATT #H3F,8 bit pattern of the data for the FBI field.
Manual operation:	See "TPC [Data Source" on page 256

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:READ <Read>

The command sets the read out mode for the bit pattern of the TPC field of the PCPCH.

The bit pattern is selected with the command [:SOURce<hw>]:BB:W3GPp: MSTation<st>:PCPCh:TPC:DATA.

Parameters:

i alameters.	
<read></read>	CONTinuous S0A S1A S01A S10A
	CONTinuous The bit pattern is used cyclically.
	S0A The bit pattern is used once, then the TPC sequence continues with 0 bits.
	S1A The bit pattern is used once, then the TPC sequence continues with 1 bits.
	S01A The bit pattern is used once and then the TPC sequence is con- tinued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).
	S10A The bit pattern is used once and then the TPC sequence is con- tinued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 11110000).
	*RST: CONTinuous
Example:	BB:W3GP:MST2:PCPC:TPC:READ CONT the selected bit pattern is repeated continuously for the TPC sequence.
Manual operation:	See "Read Out Mode" on page 257

8.9.7 PRACH Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:ATTiming</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:CPOWer</st></hw>	494
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:DSELect</st></hw>	495
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:PATTern</st></hw>	496
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:MLENgth</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer:STEP</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:PREPetition</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:RAFTer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:RARB</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:SFORmat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:SIGNature</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:SRATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TFCI</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt:CONTrol</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt:DATA?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:PREamble?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SOFFset</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SPERiod?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREMp</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREPre</st></hw>	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:ATTiming <AtTiming>

This command defines which AICH Transmission Timing, time difference between the preamble and the message part or the time difference between two successive preambles in access slots, will be definded.

Parameters:	ATT0 ATT1
<attiming></attiming>	*RST: ATT0
Example:	BB:W3GP:MST3:PRAC:ATT ATT1 selects the AICH Transmission Timing as the difference between the preamble and the message part.

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:CPOWer <CPower>

The command defines the power of the control component of the PRACH.

Parameters:

<CPower>

float			
Range:	-80 dB	to	0 dB
Increment:	0.1 dB		
*RST:	0 dB		

_

Example:BB:W3GP:MST1:PRAC:CPOW -10 dBsets the power to -10 dB.

Manual operation: See "Control Power" on page 244

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA <Data>

The command determines the data source for the PRACH.

Parameters:			
<data></data>	ZERO ONE PATTern PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt		
	PNxx		
	The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.		
	DLISt		
	A data list is used. The data list is selected with the command [:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:</st></hw>		
	DSELect.		
	ZERO ONE Internal 0 and 1 data is used.		
	PATTern		
	Internal data is used. The bit pattern for the data is defined by the command [:SOURce <hw>]:BB:W3GPp:MSTation<st>: PRACh:DATA:PATTern.</st></hw>		
	*RST: PN9		
Example:	BB:W3GP:MST1:PRAC:DATA PN11 selects internal PRBS data with period length 2 ¹¹ -1 as the data source.		
Manual operation:	See "Data Source" on page 245		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters: <dselect></dselect>	string
Example:	<pre>BB:W3GP:MST1:PRAC:DATA DLIS selects data lists as the data source. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST1:PRAC:DATA:DSEL 'pcpch_data' selects the data list pcpch_data.</pre>

Manual operation: See "Data Source" on page 245

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:PATTern <Pattern>

The command determines the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexa-decimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:		
<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:	BB:W3GP:MST1:PRAC:DATA:PATT #H3F,8 defines the bit pattern of the data for the DATA component.	
Manual operation:	See "Data Source" on page 245	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:DPOWer < DPower>

The command defines the power of the data component of the PRACH.

Parameter

<dpower></dpower>	float		
	Range: Increment: *RST:	-80 dB to 0 dB 0.1 dB 0 dB	
Example:	BB:W3GP:MST1:PRAC:DPOW -10 dB sets the power to -10 dB.		
Manual operation:	See "Data Power" on page 244		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:MLENgth <MLength>

The command sets the length of the message component as a number of frames.

Parameters: <mlength></mlength>	1 2 Frames *RST: 1
Example:	BB:W3GP:MST4:PRAC:MLEN 2 the length of the message component is 2 frames.
Manual operation:	See "Message Length" on page 244

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer < PPower>

The command defines the power of the preamble component of the PRACH. If the preamble is repeated and the power increased with each repetition, this setting specifies the power achieved during the last repetition.

Parameters: <ppower></ppower>	float
	Range:-80 dB to 0 dBIncrement:0.1 dB*RST:0 dB
Example:	BB:W3GP:MST1:PRAC:PPOW -10 dB sets the power to -10 dB. BB:W3GP:MST1:PRAC:PPOW:STEP 1 dB sets an increase in power of 1 dB per preamble repetition. BB:W3GP:MST1:PRAC:PREP 2 sets a sequence of 2 preambles. The power of the first preamble
	is - 9 dB, the power of the second, -1 dB.
Manual operation:	See "Preamble Power" on page 243

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer:STEP <Step>

The command defines the step width of the power increase, by which the preamble component of the PRACH is increased from repetition to repetition. The power defined during the last repetition corresponds to the power defined by the command [: SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer.

Parameters:

<step></step>	float		
	Range: Increment: *RST:	0 dB to 10 dB 0.1 dB 0 dB	
Example:		IST1:PRAC:PPOW:STEP 2 dB f the PRACH preamble is increased by 2 dB with tion.	
Manual operation:	See "Preamble Power Step" on page 243		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:PREPetition <PRepetition>

The command defines the number of PRACH preamble components.

Parameters: <PRepetition> integer Range: 1 to 10 *RST: 1 Example: BB:W3GP:MST1:PRAC:PREP 3 sets three preamble components. Manual operation: See "Preamble Repetition" on page 243

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:RAFTer <Repeatafter>

Sets the number of access slots after that the PRACH structure will be repeated.

Parameters: <pre><repeatafter></repeatafter></pre>	integer	
	Range: *RST:	1 to 1000 11
Example:	see [:SOUR RARB on pa	<pre>Rce<hw>]:BB:W3GPp:MSTation<st>:PRACh: ge 498</st></hw></pre>
Manual operation:	See "Repea	at Structure After (x Acc. Slots)" on page 242

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:RARB <State>

Enables/disables repeating the selected PRACH structure during one ARB sequence.

Parameters: <state></state>	0 1 OFF ON
	ON Within one ARB sequence, the selected PRACH structure is repeated once.
	<pre>OFF The selected PRACH structure can be repeated several time, depending on the structure length ([:SOURce<hw>]:BB: W3GPp:MSTation<st>:PRACh:TIMing:SPERiod?) and the [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh: RAFTer. *RST: 1</st></hw></st></hw></pre>
Example:	SOURce1:BB:W3GPp:SLENgth 4 SOURce1:BB:W3GPp:MSTation3:PRACh:TIMing: SPERiod? Response: 14 SOURce1:BB:W3GPp:MSTation1:PRACh:RARB OFF SOURce1:BB:W3GPp:MSTation1:PRACh:RAFTer 20
Manual operation:	See "Repeat Structure After ARB Sequence Length" on page 241

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SFORmat <SFormat>

Defines the slot format of the PRACH.

A change of slot format leads to an automatic change of symbol rate [: SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SRATe

When channel coding is active, the slot format is predetermined. So in this case, the command has no effect.

Parameters:

<SFormat>

0 | 1 | 2 | 3 *RST: 1

 Example:
 BB:W3GP:MST:PRAC:SFOR 2

 sets slot format 2.

 Manual operation:
 See "Slot Format" on page 244

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SIGNature <Signature>

The command selects the signature of the PRACH (see Table 3 in 3GPP TS 25.213 Version 3.4.0 Release 1999).

Parameters:

<signature></signature>	integer		
	Range: *RST:	0 to 15 0	
Example:	BB:W3GP:M selects sign	IST1:PRAC:SIGN 5 ature 5.	
Manual operation:	See "Signat	ure" on page 243	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SRATe <SRate>

The command sets the symbol rate of the PRACH.

A change of symbol rate leads to an automatic change of slot format [: SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:SFORmat.

Parameters:

<srate></srate>	D15K D30K D60K D120k	
	*RST: D30K	
Example:	BB:W3GP:MST1:PRAC:SRAT D15K sets the symbol rate of the PRACH of user equipment 1 to 15 ksps.	
Manual operation:	See "Symbol Rate" on page 245	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TFCI <Tfci>

Sets the value of the TFCI (Transport Format Combination Indicator) field. This value selects a combination of 30 bits, which are divided into two groups of 15 successive slots.

Parameters:

<tfci></tfci>	integer	
	Range: *RST:	0 to 1023 0
Example:		AST1:PRAC:TFCI 21 Cl value to 21.
Manual operation:	See "TFCI"	on page 245

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt?

Queries the level correction value for the message part. In case of one UE active and "Level Reference" set to "RMS Power", the power of the message part can be calculated by adding the set RF level.

Return values:

<mpart></mpart>	float	
	Range: Increment: *RST:	-80 to 0 0.01 0
Example:	queries the Response : the correction POW? queries the Response :	on value is 1.2 dB. RF level.
Usage:	Query only	

Manual operation: See "Delta Power (Message Part)" on page 240

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt: CONTrol?

Queries the level correction value for the message control part.

Return values: <control></control>	float Range: Increment: *RST:	-80 to 0 0.01 0
Example:	queries the Response:	AST3: PRAC: TIM: DPOW: MPAR: CONT? level correction value for the message control part. -3.24 on value is -3.24 dB.
Usage:	Query only	
Manual operation:	See "Delta I	Power (Message Part)" on page 240

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt: DATA?

Queries the level correction value for the message data part.

Return values: <data></data>	float Range: -80 to 0 Increment: 0.01 *RST: 0
Example:	BB:W3GP:MST3:PRAC:TIM:DPOW:MPAR:DATA? queries the level correction value for the message data part. Response: -3.24 the correction value is -3.24 dB.
Usage:	Query only
Manual operation:	See "Delta Power (Message Part)" on page 240

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:PREamble?

Queries level correction value for the preamble before the message part.

Return values: <preamble></preamble>	float	
	Range: Increment: *RST:	-80 to 0 0.01 0
Example:		IST3:PRAC:TIM:DPOW:PRE? level correction value for the last preamble before e part.
Usage:	Query only	
Manual operation:	See "Delta I	Power (Preamble)" on page 240

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SOFFset <SOffset>

This command defines the start offset of the PRACH in access slots. The starting time delay in timeslots is calculated according to: 2 x Start Offset.

Parameters: <soffset></soffset>	integer Range:	1 to 50
	*RST:	0
Example:		IST3:PRAC:TIM:SOFF 1 Set of the PRACH of UE 3 is 2 access slots.
Manual operation:	See "Start C	Offset #" on page 240

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SPERiod?

Queries the structure length.

Return values: <speriod></speriod>	float
Example:	<pre>See [:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh: RARB on page 498</st></hw></pre>
Usage:	Query only
Manual operation:	See "Structure Length" on page 241

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREMp <Premp>

This command defines the AICH Transmission Timing. This parameter defines the time difference between the preamble and the message part. Two modes are defined in the standard. In mode 0, the preamble to message part difference is 3 access slots, in mode 1 it is 4 access slots.

Parameters:

<premp></premp>	integer	
	Range: *RST:	1 to 14 3
Example:		MST3:PRAC:TIM.TIME:PREM 3 ce between the preamble and the message part is 3 s.

Manual operation: See "Time Pre->MP" on page 240

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREPre <Prepre>

This command defines the time difference between two successive preambles in access slots.

Parameters:

<prepre></prepre>	integer Range: *RST:	1 to 14 3
Example:	BB:W3GP:MST3:PRAC:TIM.TIME:PREP 3 the time difference between two successive preambles is 3 access slots.	
Manual operation:	See "Time F	Pre->Pre" on page 240

8.9.8 HSUPA Settings

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:CCODe?......504 [:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA.......504 [:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA.......505

User Equipment Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA:</ch></st></hw>	
PATTern	. 506
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:POWer</ch></st></hw>	.506
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:SRATe?</ch></st></hw>	. 506
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CHANnel</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CRATe?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:LAYer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:RATE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BLOCk:</st></hw>	
RATE	510
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BLOCk:</st></hw>	. 0 10
STATe	510
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	.011
CONNector.	511
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	. 511
ADEFinition.	511
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	.511
	.512
	.512
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	E10
DELay:FEEDback?	. 512
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	E40
	. 512
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	E40
MRETransmissions	.513
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	E40
	.513
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation[:</st></hw>	- 4 4
STATe]	. 514
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ[:</st></hw>	
SIMulation]:PATTern <ch></ch>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HPROcesses?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MIBRate?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MODulation</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:PAYBits?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:INDex</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:TABLe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIBits?</st></hw>	. 517
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:UECategory?</st></hw>	. 518
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:CCODe?</st></hw>	.518
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:HBIT</st></hw>	.518
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:POWer</st></hw>	. 519

User Equipment Settings

[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:RSNumber</st></hw>	519
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:STATe</st></hw>	519
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:TFCI</st></hw>	519
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:FCIO</st></hw>	520
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:MODulation</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:ORATe</st></hw>	520
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIEdch</st></hw>	521
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:TTIEdch</st></hw>	521
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat</st></hw>	522
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM</ch0></st></hw>	522
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:TO</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount</st></hw>	522

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: CCODe?

Queries the channelization code and the modulation branch (I or Q) of the E-DPDCH channel.

The channelization code is dependent on the overall symbol rate set and cannot be modified.

Return values:

<channelcode></channelcode>	integer	
Example:	BB:W3GP:MST4:HSUP:CHAN1:DPDC:E:CCOD? queries the channelization code and the modulation branch (I or Q) of E-DPDCH 1 of user equipment 4. Response: Q, 32	
Usage:	Query only	
Manual operation:	See "Channelization Code" on page 223	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: DATA <Data>

The command selects the data source for the E-DPDCH channel.

Parameters:					
<data></data>	ZERO ONE PATTern PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt				
	PNxx				
	The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.				
	DLISt				
	A data list is used. The data list is selected with the command SOURce:[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:</st></hw>				
	HSUPa]:CHANnel <ch>:DPDCh:E:DATA:DSELect.</ch>				
	ZERO ONE Internal 0 and 1 data is used.				
	PATTern				
	Internal data is used. The bit pattern for the data is defined by the command [:SOURce <hw>]:BB:W3GPp:MSTation<st>[: HSUPa]:CHANnel<ch>:DPDCh:E:DATA:PATTern.</ch></st></hw>				
	*RST: PN9				
Example:	SOUR:BB:W3GP:MST1:HSUP:CHAN1:DPDC:E:DATA PN11 selects internal PRBS data with period length 2 ¹¹ -1 as the data source.				
Manual operation:	See "E-DPDCH Data Source" on page 223				

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: DATA:DSELect <DSelect>

The command selects the data list for the DLISt data source.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	string
Example:	SOUR:BB:W3GP:MST1:CHAN1:DPDC:E:DATA DLIS selects data lists as the data source. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST1:CHAN1:DPDC:E:DATA:DSEL 'dp1' selects the data list dp1.
Manual operation:	See "DPDCH Data Source" on page 184

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: DATA:PATTern <Pattern>

The command determines the bit pattern for the data component when the PATTern data source is selected. The first parameter determines the bit pattern (choice of hexa-decimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:

<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:		<pre>N3GP:MST1:HSUP:CHAN1:DPDC:E:PATT #H3F, 8 bit pattern of the data for the DATA component.</pre>
Manual operation:	See "E-DPI	DCH Data Source" on page 223

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: POWer <Power>

The command sets the power of the selected E-DPDCH channel.

Parameters:

r arameters.		
<power></power>	float	
	Range: Increment: *RST:	-80 dB to 0 dB 0.01 0 dB
Example:	BB:W3GP:MST1:HSUP:CHAN1:DPDC:E:POW -2.5dB sets the power of E-DPDCH channel 1 to 2.5 dB.	
Manual operation:	See "Channel Power" on page 223	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E: SRATe?

The command queries the symbol rate and the state of the E-DPDCH channel.

The symbol rate and the state of the channels are dependent on the overall symbol rate set and cannot be modified.

Return values:

D15K D30K D60K D120k D240k D480k D960k D1920k D2X1920K D2X960K2X1920K
BB:W3GP:MST4:HSUP:CHAN1:DPDC:E:SRAT? queries the symbol rate of E-DPDCH 1 of user equipment 4. Response: 960 the symbol rate is 960 ksps.
Query only
See "Symbol Rate / State" on page 223

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CHANnel <Channel>

The command sets the FRC according to TS 25.141 Annex A.10.

Selection of FRC#8 is enabled only for instruments equipped with option SMW-K83.

Parameters: <channel></channel>	USER 1 2 3 4 5 6 7 8 *RST: 4	
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:CHAN 4 sets the FRC to channel 4.	
Manual operation:	See "Fixed Reference Channel (FRC)" on page 210	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CRATe?

The command queries the relation between the information bits to binary channel bits.

float
SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:CRAT? queries the coding rate. Response: 0.705 the coding rate is 0.705.
Query only
See "Coding Rate (Ninf/Nbin)" on page 214

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA <Data>

Selects the data source for the E-DCH channels, i.e. this paramter affects the corresponding paramter of the E-DPDCH.

Parameters:			
<data></data>	PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt ZERO ONE PATTern		
	PNxx		
	The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.		
	DLISt		
	A data list is used. The data list is selected with the command [:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]: DPCCh:E:FRC:DATA:DSELect.</st></hw>		
	ZERO ONE		
	Internal 0 and 1 data is used.		
	PATTern Internal data is used. The bit pattern for the data is defined by the command [:SOURce <hw>]:BB:W3GPp:MSTation<st>[: HSUPa]:DPCCh:E:FRC:DATA:PATTern. The maximum length is 64 bits.</st></hw>		
	*RST: PN9		
Example:	BB:W3GP:MST:HSUP:DPCC:E:FRC:DATA PATT selects as the data source BB:W3GP:MST:HSUP:DPCC:E:FRC:DATA:PATT #H48D0,16 defines the bit pattern.		
Manual operation:	See "Data Source (E-DCH)" on page 211		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: DSELect <DSelect>

The command selects the data list when the DLISt data source is selected for E-DCH channels.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	string
Example:	<pre>BB:W3GP:MST:HSUP:DPCC:E:FRC:DATA DLIS selects the Data Lists data source. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST:HSUP:DPCC:E:FRC:DATA:DSEL 'frc_1' selects the data list frc_1.</pre>

Manual operation: See "Data Source (E-DCH)" on page 211

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA: PATTern <Pattern>

The command determines the bit pattern for the PATTern data source selection. The maximum length of the bit pattern is 64 bits.

Parameters:		
<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:	BB:W3GP:MST:HSUP:DPCC:E:FRC:DATA:PATT #B11110000,8 defines the bit pattern of the data for the E-DCH channels.	
Manual operation:	See "Data	Source (E-DCH)" on page 211

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT: LAYer <Layer>

The command sets the layer in the coding process at which bit errors are inserted.

Parameters:		
<layer></layer>	TRANsport PHYSical	
	*RST:	PHYSical
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DERR:BIT:LAY TRAN sets the bit error insertion to the transport layer.	
Manual operation:	See "Insert	Errors On" on page 220

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT: RATE <Rate>

Sets the bit error rate.

Parameters:

<rate></rate>	float		
	Range: Increment: *RST:	1E-7 to 0.5 1E-7 0.001	
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DERR:BIT:RATE 1e-3 sets the bit error rate to 1E-3.		
Manual operation:	See "Bit Error Rate" on page 219		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT: STATe <State>

The command activates or deactivates bit error generation.

Parameters: <state></state>	ON OFF *RST:	0
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DERR:BIT:STAT ON activates the bit error state.	
Manual operation:	See "Bit Error State" on page 219	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor: BLOCk:RATE <Rate>

Sets the block error rate.

Parameters:

<rate></rate>	float		
	Range: Increment: *RST:		
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DERR:BLOC: RATE 1E-3 sets the block error rate.		

Manual operation: See "Block Error Rate" on page 220

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor: BLOCk:STATe <State>

The command activates or deactivates block error generation.

Parameters: <state></state>	ON OFF *RST:	0
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DERR:BLOC: STAT ON activates the block error generation.	
Manual operation:	See "Block Error State" on page 220	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:PATTern <Pattern>

The command sets the user-definable bit pattern for the DTX.

Parameters:

<pattern></pattern>	string	
	*RST:	"1"

User Equipment Settings

Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DTX:PATT		
	"11-1-"		
	sets the bit pattern for the DTX.		
Manual operation:	See "User Data (DTX Pattern)" on page 214		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:STATe <State>

The command activates or deactivates the DTX (Discontinuous Transmission) mode.

Manual operation:	See "State (DTX)" on page 214
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:DTX:STAT ON activates the DTX.
Parameters: <state></state>	ON OFF *RST: 0

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:CONNector <Connector>

Determines the input connector at that the instrument expects the feedback signal.

Parameters: <connector></connector>	LOCal GLOBal *RST: LOCal
Example:	External control signal at the local TM3 connector of Baseband A. SOURcel:INPut:TM3:DIRection INPut SOURcel:INPut:TM3:SIGNal FEEDback SOURcel:BB:W3GPp:MSTation1[:HSUPa]:DPCCh:E:FRC: HARQ:SIMulation:CONNector LOCal
Example:	External control signal at the global USER6 connector. SOURce:INPut:USER6:DIRection INPut SOURce:INPut:USER6:SIGNal FEEDback SOURce1:BB:W3GPp:MSTation1[:HSUPa]:DPCCh:E:FRC: HARQ:SIMulation:CONNector GLOBal
Manual operation:	See "Connector (HARQ)" on page 218

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:ADEFinition <ADefinition>

Selects whether a high level (TTL) is interpreted as an ACK or a low level.

Parameters:

<ADefinition> HIGH | LOW *RST: HIGH

User Equipment Settings

Example:	SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM:
	ADEF HIGH
	a high level (TTL) is interpreted as an ACK.
Manual operation:	See "ACK Definition (HARQ)" on page 218

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:DELay:AUSer <AUser>

Selects an additional delay to adjust the delay between the HARQ and the feedback.

Parameters: <auser></auser>	integer Range: *RST:	-50 to 60 0
Example:	SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM: DEL:AUS 20 sets the additional user delay to 20.	
Manual operation:	See "Additional User Delay" on page 219	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:DELay:FEEDback?

Queries the delay between the HARQ and the feedback.

: 0 to 600	
378	
SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM: DEL:FEED? queries the delay between HARQ and feedback.	
Query only	
See "Delay Between HARQ And Feedback (HARQ)" on page 218	
F SS V	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:MODE <Mode>

Selects the HARQ simulation mode.

Parameters: <mode></mode>	VHARq	
	VHARq This mode simulates basestation feedback. For every HARQ process (either 4 or 8), a bit pattern can be defined to simulate ACKs and NACKs.	
	*RST: HFE	
Example:	SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM: MODE VHAR sets simulation mode Virtual HARQ.	
Manual operation:	See "Mode (HARQ)" on page 217	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:MRETransmissions

Sets the maximum number of retransmissions. After the expiration of this value, the next packet is send, regardless of the received feedback.

Parameters:

<mretransmission></mretransmission>	integer Range:	0 to 20
	*RST:	4
Example:	MRET 10	:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM:
Manual operation:	See "Maximum Number Of Retransmissions (HARQ)" on page 218	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation:RVZero <RvZero>

If activated, the same redundancy version is sent, that is, the redundancy version is not adjusted for the next retransmission in case of a received NACK.

Parameters:

	ON the same redundancy version is sent for the next retransmission.
	ON
Example:	SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARO:SIM:RVZ
	*RST: 1
<rvzero></rvzero>	ON OFF

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ: SIMulation[:STATe] <State>

Activates or deactivates the HARQ simulation mode.

Parameters: <state></state>	ON OFF *RST: 0
Example:	SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM: STAT ON activates the HARQ simulation mode.
•• • •	

Manual operation: See "State (HARQ)" on page 217

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ[: SIMulation]:PATTern<ch><Pattern>

Sets the HARQ Pattern. The maximum length of the pattern is 32 bits.

Parameters:

<pattern></pattern>	string
Example:	SOUR1:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HARQ:SIM: HARQ:PATT 1010 sets the HARQ simulation pattern.
Manual operation:	See "HARQ18: ACK/NACK" on page 217

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC: HPROcesses?

The command queries the number of HARQ (Hybrid-ARQ Acknowlegement) process.

Return values: <hprocesses></hprocesses>	integer Range: 1 to 8
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HPRO? queries the number of HARQ processes. Response: 5
Usage:	Query only
Manual operation:	See "Number Of HARQ Processes" on page 212

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MIBRate?

Queries the maximum information bit rate.

Return values: <MiBRate>

float Increment: 0.1

User Equipment Settings

Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:HPRO? queries the maximum ninformation bit rate. Response: 1353.0	
Usage:	Query only	
Manual operation:	See "Maximum Information Bitrate/kbps" on page 210	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MODulation <Modulation>

Sets the modulation used for the selected FRC.

Two modulation schemes are defined: BPSK for FRC 1 - 7 and 4PAM (4 Pulse-Amplitude Modulation) for FRC 8.

Parameters:

<modulation></modulation>	BPSK PAM4	
	*RST: BPSK	
Example:	BB:W3GP:MST1:HSUP:DPCC:E:FRC:CHAN 8 sets the FRC to channel 8. BB:W3GP:MST1:HSUP:DPCC:E:FRC:MOD 4PAM sets the modulation.	

Manual operation: See "Modulation" on page 212

integer

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe <ORate>

Sets the overall symbol rate for the E-DCH channels, i.e. this parameter affects the corresponding parameter of the E-DPDCH.

Parameters:

<orate></orate>	D15K D30K D60K D120k D240k D480k D960k D1920k D2X1920K D2X960K2X1920K		
	*RST:	D960k	
Example:		MST1:HSUP:DPCC:E:FRC:ORAT D2X1920K erall symbol rate.	
Manual operation:	See "Overall Symbol Rate" on page 212		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:PAYBits?

The command queries the payload of the information bit. This value determines the number of tranport layer bits sent in each HARQ process.

Return values:

<PayBits>

User Equipment Settings

Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:PAYB? queries the payload of the information bit. Response: 2706	
Usage:	Query only	
Manual operation:	See "Information Bit Payload (Ninf)" on page 213	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe <State>

The command activates or deactivates the FRC state for the E-DPCCH channels.

Parameters: <state></state>	ON OFF *RST: 0
Example:	SOUR:BB:W3GP:MST1:HSUP:DPCC:E:FRC:STAT ON activates the FRC state for the E-DPCCH channels.
Manual operation:	See "State (HSUPA FRC)" on page 209

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:INDex <Index>

Selects the Transport Block Size Index (E-TFCI) for the corresponding table, as described in in 3GPP TS 25.321, Annex B.

The value range of this parameter depends on the selected Transport Block Size Table ([:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS: TABLe).

Parameters:

<index></index>	integer		
	Range: *RST:	0 to max 41	
Example:	BB:W3GP:MST:HSUP:DPCC:E:FRC:TBS:TABL TABOTTI10 sets the transport block size table BB:W3GP:MST:HSUP:DPCC:E:FRC:TBS:INX 127 sets the transport block size index.		
Manual operation:	See "Trans	port Block Size Index (E-TFCI)" on page 213	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:TABLe <Table>

Selects the Transport Block Size Table from 3GPP TS 25.321, Annex B according to that the transport block size is configured.

The transport block size is determined also by the Transport Block Size Index ([: SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:INDex).

The allowed values for this command depend on the selected E-DCH TTI([: SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch) and modulation scheme ([:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]: DPCCh:E:FRC:MODulation).

E-DCH TTI	Modulation	Transport Block Size Table	SCPI Paramater	Transport Block Size Index (E- TFCI)
2ms	BPSK	Table 0	TAB0TTI2	0 127
		Table 1	TAB1TTI2	0 125
	4PAM	Table 2	TAB2TTI2	0 127
		Table 3	TAB3TTI2	0 124
10ms	-	Table 0	TAB0TTI10	0 127
		Table 1	TAB1TTI10	0 120

Parameters:

<table></table>	TAB0TTI2 TAB1TTI2 TAB2TTI2 TAB3TTI2 TAB0TTI10 TAB1TTI10		
	*RST: TAB0TTI10		
Example:	BB:W3GP:MST:HSUP:DPCC:E:FRC:ORAT D1920 sets the overall symbol rate BB:W3GP:MST:HSUP:DPCC:E:FRC:MOD BPSK sets the modulation BB:W3GP:MST:HSUP:DPCC:E:FRC:TTIE 2 sets the E-DCH TTI BB:W3GP:MST:HSUP:DPCC:E:FRC:TBS:TABL TABOTTI2 sets the transport block size table BB:W3GP:MST:HSUP:DPCC:E:FRC:TBS:IND 25 sets the transport block size index		
Manual an avation	Cas "Transport Disck Size Table" on page 212		

Manual operation: See "Transport Block Size Table" on page 213

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIBits?

The command queries the number of physical bits sent in each HARQ process.

Return values: <ttibits></ttibits>	float
Example:	BB:W3GP:MST1:HSUP:DPCC:E:FRC:TTIB? queries the number of physical bits sent in each HARQ process.
Usage:	Query only

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch <Ttiedch>

Sets the TTI size (Transmission Time Interval).

Parameters: <ttiedch></ttiedch>	2ms 10ms *RST: 2ms
Example:	BB:W3GP:MST1:HSUP:DPCC:E:FRC:TTIE 2ms sets the TTI.
Manual operation:	See "E-DCH TTI" on page 212

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:UECategory?

Queries the UE category that is minimum required for the selected FRC.

Return values: <uecategory></uecategory>	integer
Example:	BB:W3GP:MST1:HSUP:DPCC:E:FRC:UEC? queries the UE category.
Usage:	Query only
Manual operation:	See "UE Category" on page 210

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:CCODe?

Querries the channelization code.

Return values:		
<ccode></ccode>	integer	
	Range: *RST:	1 to max 1
Usage:	Query only	
Manual operation:	See "Channelization Code" on page 208	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:HBIT <Hbit>

The command activates the happy bit.

Parameters: <hbit></hbit>	ON OFF *RST:	ON	
Example:	BB:W3GP:M sets the hap	IST1:HSUP:DPCC:E:HBIT ppy bit.	ON
Manual operation:	See "Happy	Bit" on page 208	

208

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:POWer <Power>

The command sets the power of the E-DPCCH channel.

Parameters: <power></power>	float Range: Increment: *RST:	-80 dB to 0 dB 0.01 0 dB
Example:		IST1:HSUP:DPCC:E:POW -2.5dB ver of the E-DPCCH channel.
Manual operation:	See "Power	" on page 207

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:RSNumber <RsNumber>

The command sets the retransmission sequence number.

Parameters: <rsnumber></rsnumber>	integer	
	Range: *RST:	0 to 3 0
Example:		MST1:HSUP:DPCC:E:RSN 0 ransmission sequence number.
Manual operation:	See "Retrai	nsmission Sequence Number" on page 2

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:STATe <State>

The command activates deactivates the E-DPCCH.

Parameters: <state></state>	ON OFF	
	*RST:	OFF
Example:	BB:W3GP:Mactivates the	ST1:HSUP:DPCC:E:STAT ON E-DPCCH.
Manual operation:	See "State (I	E-DPCCH)" on page 207

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:TFCI <Tfci>

The command sets the value for the TFCI (Transport Format Combination Indicator) field.

Parameters:

<Tfci>

integer	
Range:	0 to 127
*RST:	0

 Example:
 BB:W3GP:MST1:HSUP:DPCC:E:TFCI 0

 sets the value for the TFCI.

 Manual operation:
 See "E-TFCI Information" on page 208

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:FCIO <Fcio>

The command sets the channelization code to I/0.

Parameters:	
<fcio></fcio>	ON OFF
	*RST: OFF
Example:	BB:W3GP:MST1:HSUP:DPDC:E:FCIO ON sets the channelization code to I/0.
Manual operation:	See "Force Channelization Code To I/0" on page 221

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:MODulation <Modulation>

Sets the modulation of the E-DPDCH.

There are two possible modulation schemes specified for this channel, BPSK and 4PAM (4 Pulse-Amplitude Modulation). The latter one is available only for the following Overall Symbol Rates ([:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]: DPDCh:E:ORATe):

- 2x960 ksps
- 2x1920 ksps
- 2x960 + 2x1920 ksps
- 2x960 ksps, I or Q only
- 2x1920 ksps, I or Q only
- 2x960 + 2x1920 ksps, I or Q only

Parameters:

<modulation></modulation>	BPSK PAM4 *RST: BPSK
Example:	BB:W3GP:MST1:HSUP:DPDC:E:ORAT D2x960K2x1920K sets the overall symbol rate BB:W3GP:MST1:HSUP:DPDC:E:MOD 4PAM sets the modulation to 4PAM
Options:	Modulation scheme 4PAM requires the HSPA+ option R&S SMW-K83.
Manual operation:	See "Modulation" on page 222

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:ORATe <ORate>

The command sets the overall symbol rate of all the E-DPDCH channels.

Parameters: <orate></orate>	D1920k D	0K D60K D120k D240k D480k D960k 2X1920K D2X960K2X1920K D2x960KI D2X1920KI D2X1920KQ D2X960K2X1920KI X1920KQ D60K
Example:		MST1:HSUP:DPDC:E:ORAT D60K erall symbol rate
Manual operation:	See "Overa	Il Symbol Rate" on page 221

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:STATe <State>

The command activates or deactivates the E-DPDCHs. This always activates or deactivates all the channels.

Parameters:	
<state></state>	ON OFF
	*RST: 0
Example:	BB:W3GP:MST1:HSUP:DPDC:E:STAT ON activates all the E-DPDCHs.
Manual operation:	See "State (E-DPDCH)" on page 221

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIEdch <Ttiedch>

The command sets the value for the TTI (Transmission Time Interval).

Parameters:

<ttiedch></ttiedch>	2ms 10ms		
	*RST:	2ms	
Example:	BB:W3GP:MST1:HSUP:DPDC:E:TTIE 2ms sets the value for the TTI to 2 ms.		
Manual operation:	See "E-DCH TTI" on page 226		

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:TTIEdch <Ttiedch>

Sets the value for the TTI size (Transmission Time Interval).

This command is a query only, if an UL-DTX is enabled ([:SOURce<hw>]:BB: W3GPp:MSTation:UDTX:STATe ON) or an FRC is activated ([:SOURce<hw>]:BB: W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe ON).

Parameters:

<Ttiedch>

2ms | 10ms *RST: 2ms

User Equipment Settings

Example: BB:W3GP:MST[:HSUPa]:EDCH:TTIE 10ms BB:W3GP:MST:UDTX:TTIE 2ms BB:W3GP:MST:UDTX:STAT ON BB:W3GP:MST[:HSUPa]:EDCH:TTIE? Response: 2ms

Manual operation: See "E-DCH TTI" on page 226

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat <Repeat>

Determine the number of TTIs after that the E-DCH scheduling is repeated.

Parameters:		
<repeat></repeat>	integer	
	Range: *RST:	1 to dynamic 1
Example:	[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]: EDCH:ROWCount on page 522</st></hw>	
Manual operation:	See "E-DCH Schedule Repeats After" on page 227	

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM <TtiFrom>

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:TO <TtiTo>

Determines the start/end TTI of the corresponding E-DCH burst.

Parameters:

<ttito></ttito>	integer Range: *RST:	0 to dynamic row index
Example:	<pre>[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]: EDCH:ROWCount on page 522</st></hw></pre>	

Manual operation: See "E-DCH TTI To" on page 227

[:SOURce<hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount <RowCount>

Sets the number of the rows in the scheduling table.

Parameters:

<rowcount></rowcount>	integer	
	Range:	1 to 32
	*RST:	1

Example:	E-DCH scheduling example		
	BB:W3GP:MST[:HSUPa]:EDCH:TTIE 2ms		
	BB:W3GP:MST[:HSUPa]:EDCH:ROWC 2		
	BB:W3GP:MST[:HSUPa]:EDCH:REP 1000		
	BB:W3GP:MST[:HSUPa]:EDCH:ROW0:FROM 3		
	BB:W3GP:MST[:HSUPa]:EDCH:ROW0:TO 6		
	BB:W3GP:MST[:HSUPa]:EDCH:ROW1:FROM 128		
	BB:W3GP:MST[:HSUPa]:EDCH:ROW0:TO 156		
Manual operation:	See "Number of Table Rows" on page 226		

8.9.9 UL-DTX and Uplink Scheduling Settings

The following are simple programing examples with the purpose to show **all** commands for this task. In real application, some of the commands may be ommited.

Example: Configuring the UL-DTX settings

Example: Enabling User Scheduling

[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:MODE</hw>	524
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:STATe</hw>	524
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:TTIEdch</hw>	524
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:OFFSet</hw>	525
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:ITHReshold</hw>	

User Equipment Settings

[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:LPLength</hw>	. 525
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:CYCLe<ch></ch></hw>	. 526
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:BURSt<ch></ch></hw>	. 526
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:PREamble<ch>?</ch></hw>	526
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:POSTamble<ch>?</ch></hw>	. 527
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:USCH:CATalog?</hw>	527
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:USCH:DELete</hw>	. 527
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:USCH:FSELect</hw>	528

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:MODE <UldtxMode>

Switches between the UL-DTX and User Scheduling functions.

Parameters: <uldtxmode></uldtxmode>	UDTX USCH *RST: UDTX	
Example:	see "Example: Enabling User Scheduling" on page 523 and "Example: Configuring the UL-DTX settings" on page 523	
Options:	R&S SMW-K83	
Manual operation:	See "Mode" on page 165	

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:STATe <State>

Enables/disables UL-DTX or user scheduling, as selected with the command [: SOURce<hw>]:BB:W3GPp:MSTation:UDTX:MODE.

Enabling the UL-DTX deactivates the DPDCH and the HSUPA FRC; enabled user scheduling deactivates the HSUPA FRC.

Parameters:

<state></state>	0 1 OFF ON *RST: 0		
Example:	see "Example: Configuring the UL-DTX settings" on page 523		
Options:	R&S SMW-K83		
Manual operation:	See "UL-DTX / User Scheduling State" on page 165		

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:TTIEdch <EdchTti>

Sets the duration of a E-DCH TTI.

Parameters: <edchtti></edchtti>	2ms 10ms	
	Range: *RST:	2ms to 10ms 2ms
Example:	see "Example: Configuring the UL-DTX settings" on page 523	
Options:	R&S SMW-K83	

Manual operation: See "E-DCH TTI" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:OFFSet <Offset>

Sets the parameter UE_DTX_DRX_Offset and determines the start offset in subframes of the first uplink DPCCH burst (after the preamble). The offest is applied only for bursts belonging to the DPCCH burst pattern; HS-DPCCH or E-DCH transmissions are not affected.

Parameters:

<offset></offset>	integer		
	Range: Increment: *RST:	0 to 159 depends on E-DCH TTI parameter 0	
Example:	see "Example: Configuring the UL-DTX settings" on page 523		
Options:	R&S SMW-K83		
Manual operation:	See "UL-DTX Offset" on page 166		

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:ITHReshold <Threshold>

Defines the number of consecutive E-DCH TTIs without an E-DCH transmission, after which the UE shall immediately move from UE-DTX cycle 1 to using UE-DTX cycle 2.

_			
Da	ram	oto	re
10	an	ICIC	13.

<threshold></threshold>	1 4 8 16 32 64 128 256 *RST: 16
Example:	see "Example: Configuring the UL-DTX settings" on page 523
Options:	R&S SMW-K83
Manual operation:	See "Inactivity Threshold for Cycle 2" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:LPLength <LongPreamble>

Determines the length in slots of the preamble associated with the UE-DTX cycle 2.

Parameters:	
<longpreamble></longpreamble>	2 4 15
	*RST: 2
Example:	see "Example: Configuring the UL-DTX settings" on page 523
Options:	R&S SMW-K83
Manual operation:	See "Long Preamble Length" on page 167

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:CYCLe<ch> <DtxCycle>

Sets the offset in subframe between two consecutive DPCCH bursts within the corresponding UE-DTX cycle, i.e. determines how often the DPCCH bursts are transmitted.

The UE-DTX cycle 2 is an integer multiple of the UE-DTX cycle 1, i.e. has less frequent DPCCH transmission instants.

Note: The allowed values depend on the selected E-DCH TTI.

Suffix: <ch></ch>	1 2 UL-DTX cycle 1 or 2
Parameters: <dtxcycle></dtxcycle>	1 4 5 8 10 16 20 32 40 64 80 128 160 *RST: 5
Example:	see "Example: Configuring the UL-DTX settings" on page 523
Options:	R&S SMW-K83
Manual operation:	See "DTX Cycle 1 / DTX Cycle 2" on page 167

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:BURSt<ch> <BurstLength>

Determines the uplink DPCCH burst length in subframes without the peramble and postamble, when the corresponding UE-DTX cycle is applied.

-		
- S I	utt	iv'
	un	I A .

1 2 UL-DTX cycle 1 or 2	
1 2 5 *RST: 1	
see "Example: Configuring the UL-DTX settings" on page 523	
R&S SMW-K83	
See "DPCCH Burst Length 1 / DPCCH Burst Length 2" on page 167	

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:PREamble<ch>?

Queries the preamble length in slots, when the corresponding UE-DTX cycle is applied.

The preamble length is fixed to 2 slots.

Suffix:

<ch>

1|2 UL-DTX cycle 1 or 2

Return values:		
<preamble></preamble>	integer	
	Range:	2 to 2
	*RST:	2
Example:	see "Examp	le: Configuring the UL-DTX settings" on page 523
Usage:	Query only	
Options:	R&S SMW-K83	
Manual operation:	See "Preamble Length 1 / Preamble Length 2" on page 168	

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:POSTamble<ch>?

Queries the postamble length in slots, when the corresponding UE-DTX cycle is applied.

The postamble length is fixed to 1 slot.

Suffix: <ch></ch>	1 2 UL-DTX cycle 1 or 2
Return values: <postamble></postamble>	integer Range: 1 to 1
Example:	see "Example: Configuring the UL-DTX settings" on page 523
Usage:	Query only
Options:	R&S SMW-K83
Manual operation:	See "Postamble Length 1 / Postamble Length 2" on page 168

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:USCH:CATalog?

Queries the files with uplink user scheduling settings (file extension * . \Im_{g_sch}) in the default or the specified directory.

Return values:

<catalog></catalog>	string
Example:	see "Example: Enabling User Scheduling" on page 523
Usage:	Query only
Options:	R&S SMW-K83
Manual operation:	See "User Scheduling File" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:USCH:DELete <Filename>

Deletes the selected file from the default or specified directory. Deleted are files with the file extension $*.3g_sch$.

Setting parameters: <filename></filename>	string
Example:	see "Example: Enabling User Scheduling" on page 523
Usage:	Setting only
Options:	R&S SMW-K83
Manual operation:	See "User Scheduling File" on page 166

[:SOURce<hw>]:BB:W3GPp:MSTation:UDTX:USCH:FSELect <Filename>

Loads the selected file from the default or the sepcified directory. Load are files with extension *.3g_sch.

Parameters:

<filename></filename>	string
Example:	see "Example: Enabling User Scheduling" on page 523
Options:	R&S SMW-K83
Manual operation:	See "User Scheduling File" on page 166

8.9.10 Dynamic Power Control Settings

Example: Configuring the Dynamic Power Control Settings

The following is a simple programing example with the purpose to show **all** commands for this task. In real application, some of the commands may be ommitted.

```
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:DIRection UP
// selects direction up, a high level of the control signals
// leads to an increase of the channel power
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:STEP 1 dB
// selects a step width of 1 dB.
// A high level of the control signal leads to
// an increase of 1 dB of the channel power,
// a low level to a decrease of 1 dB.
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:RANGe:DOWN 10 dB
// selects a dynamic range of 10 dB for ranging up the channel power
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:RANGe:UP 50 dB
// selects a dynamic range of 50 dB for ranging up the channel power
// The overall increase and decrease of channel power,
// i.e. the dynamic range is limited to 60 dB
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:MODE TPC
// selects the source of the power control signal
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:STATe ON
// activates Dynamic Power Control for the enhanced channels of UE1
SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:POWer?
// queries the deviation of the channel power (delta POW)
```

// from the set power start value of the DPDCH SOURce:BB:W3GPp:MSTation:ENHanced:DPDCh:DPControl:AOUE ON

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl: ASSignment <ASSignment>

Enabled for UL-DTX mode only ([:SOURce<hw>]:BB:W3GPp:MSTation:UDTX: STATE ON).

The power control recognizes the UL-DPCCH gaps according to 3GPP TS 25.214. Some of the TPC commands sent to the instrument over the external line or by the TPC pattern are ignored, whereas others are summed up and applied later. The processing of the TPC commands depends only on whether the BS sends the TPC bits on the F-DPCH with slot format 0/ slot format 9 or not.

Parameters:

<assignment></assignment>	NORMal F	DPCh
	*RST:	NORMal
Example:	BB:W3GP:MST1:UDTX:STAT ON BB:W3GP:MST:DPC:ASS FDPC	
Manual operation:	See "Assignment Mode for UL-DTX" on page 170	

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:DIRection <Direction>

The command selects the Dynamic Power Control direction. The selected direction determines if the channel power is increased (UP) or decreased (DOWN) by control signal with high level.

Parameters:		
<direction></direction>	UP DOWN	
	*RST: UP	
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 528	
Manual operation:	See "Direction" on page 169	

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:MODE <Mode>

Determines the source of the control signal.

Parameters: <mode></mode>	TPC MANual EXTernal		
	*RST: EXTernal		
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 528		
Manual operation:	See "Mode" on page 169		

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl: CONNector <Connector>

Determines the input connector at that the instrument expects the external control signal.

Parameters:

<connector></connector>	LOCal GLOBal *RST: LOCal
Example:	External control signal at the local TM3 connector of Baseband A. SOURcel:INPut:TM3:DIRection INPut SOURcel:INPut:TM3:SIGNal FEEDback SOURcel:BB:W3GPp:MSTation[:ENHanced:DPDCh]: DPControl:CONNector LOCal
Example:	External control signal at the global USER6 connector. SOURce:INPut:USER6:DIRection INPut SOURce:INPut:USER6:SIGNal FEEDback SOURce1:BB:W3GPp:MSTation[:ENHanced:DPDCh]: DPControl:CONNector GLOBal
Manual operation:	See "Connector" on page 169

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl[:POWer]?

The command queries the deviation of the channel power (delta POW) from the set power start value of the DPDCH.

Return values: <power></power>	float	
	Range: Increment: *RST:	
Example:	see Exampl on page 528	e "Configuring the Dynamic Power Control Settings" 8

Usage: Query only

Manual operation: See "Power Control Graph" on page 170

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:RANGe: DOWN <Down>

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:RANGe: UP <Up>

The command selects the dynamic range for ranging up the channel power.

Parameters:

<up></up>	float		
	Range: 0 to 60 Increment: 0.01 *RST: 10 Default unit: dB		
Example:	BB:W3GP:MST:ENH:DPDC:DPC:RANG:UP 20dB selects a dynamic range of 20 dB for ranging up the channel power.		
Manual operation:	See "Up Range/Down Range" on page 170		

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STATe <State>

The command activates/deactivates Dynamic Power Control.

Parameters: <state></state>	0 1 OFF ON *RST: 0
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 528
Manual operation:	See "Dynamic Power Control State" on page 169

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STEP: MANual <Manual>

This command provides the control signal for manual mode of Dynamic Power Control.

Parameters:

<Manual> MAN0 | MAN1 *RST: MAN0

Enhanced Channels of the User Equipment

Example:	BB:W3GP:MST:ENH:DPDC:DPC:MODE MAN selects manual power control. BB:W3GP:MST:ENH:DPDC:DPC:STAT ON activates Dynamic Power Control for the enhanced channels of UE1. BB:W3GP:MST:ENH:DPDC:DPC:STEP:MAN MAN0 decreases the level by 0.5 dB.
Manual operation:	See "Mode" on page 169
manaal oporation	

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STEP[: EXTernal] <External>

This command sets step width by which – with Dynamic Power Control being switched on - the channel power of the enhanced channels is increased or decreased.

Parameters:

<external></external>	float		
	Range:0.5 to 6Increment:0.01*RST:1Default unit:dB		
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 528		
Manual operation:	See "Power Step" on page 170		

[:SOURce<hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:AOUE <State>

Enables power control of the enhanced channels of all active UEs with the settings of UE1.

Parameters:

<state></state>	0 1 OFF ON *RST: 0
Example:	see Example "Configuring the Dynamic Power Control Settings" on page 528
Manual operation:	See "Also Control Other UEs" on page 172

8.10 Enhanced Channels of the User Equipment

The SOURce: BB: W3GPp: MSTation: ENHanced subsystem contains the commands for setting the enhanced channels of user equipment 1 (UE1).

The commands of this system only take effect when the 3GPP FDD standard is activated, the uplink transmission direction is selected and user equipment 1 is enabled:

- SOURce:BB:W3GPp:STATe ON
- SOURce:BB:W3GPp:LINK UP
- SOURce:BB:W3GPp:MSTation1:STATe ON

TCHannel<di>

The transport channel designations for remote control are TCHannel0 for DCCH, TCHannel1 to TCHannel6 for DTCH1 to DTCH6.

[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:BPFRame?533</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:STATe</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:TYPE</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:CATalog?535</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:DELete</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:LOAD536</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:STORe536</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:RATE537</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:RATE</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor[:BLOCk]:STATe</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2539</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:ORATe</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:STATe</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:RMATtribute540</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:STATe540</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TBCount</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TBSize</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TTINterval541</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:CRCSize541</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA:</di0></hw>
DSELect
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA:</di0></hw>
PATTern
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:EPRotection543</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:INTerleaver543</di0></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:STATe</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:TYPE</hw>
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:STATe</st></hw>
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:TYPE545</st></hw>

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:BPFRame?

The command queries the number of data bits in the DPDCH component of the frame at the physical layer. The number of data bits depends on the overall symbol rate.

Enhanced Channels of the User Equipment

Return values: <bpframe></bpframe>	integer Range:	150 to 9600
Example:	BB:W3GP:MST:ENH:DPDC:BPFR? queries the number of data bits. Response: 300 the number of data bits is 300.	
Usage:	Query only	
Manual operation:	See "Bits pe	r Frame (DPDCH)" on page 231

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:STATe <State>

The command activates or deactivates channel coding for the enhanced channels.

When channel coding is activated, the overall symbol rate ([:SOURce<hw>]:BB: W3GPp:MSTation:ENHanced:DPDCh:ORATe) is set to the value predetermined by the selected channel coding type ([:SOURce<hw>]:BB:W3GPp:MSTation: ENHanced:DPDCh:CCODing:TYPE).

Parameters:

<state></state>	0 1 OFF ON	
	*RST: 0	
Example:	BB:W3GP:MST:ENH:DPDC:CCOD:TYPE M12K2 selects channel coding type RMC 12.2 kbps. BB:W3GP:MST:ENH:DPDC:CCOD:STAT ON activates channel coding.	
Manual operation:	See "Channel Coding State" on page 230	

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:TYPE <Type>

The command selects the channel coding scheme in accordance with the 3GPP specification. The channel coding scheme selected predetermines the overall symbol rate.

When channel coding is activated ([:SOURce<hw>]:BB:W3GPp:MSTation: ENHanced:DPDCh:CCODing:STATe) the overall symbol rate ([:SOURce<hw>]:BB: W3GPp:MSTation:ENHanced:DPDCh:ORATe) is set to the value predetermined by the selected channel coding type.

Parameters:

<Type>

M12K2 | M64K | M144k | M384k | AMR

M12K2

Measurement channel with an input data bit rate of 12.2 ksps.

M64K

Measurement channel with an input data bit rate of 64 ksps.

M144K

Measurement channel with an input data bit rate of 144 ksps.

M384K

Measurement channel with an input data bit rate of 384 ksps.

AMR

Channel coding for the AMR Coder (coding a voice channel).

USER

This parameter cannot be set. USER is returned whenever a user-defined channel coding is active, that is to say, after a channel coding parameter has been changed or a user coding file has been loaded. The file is loaded by the command [: SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh: CCODing:USER:LOAD.

*RST: M12K2

Example: BB:W3GP:MST:ENH:DPDC:CCOD:TYPE M144K selects channel coding scheme RMC 144 kbps.

Manual operation: See "Coding Type" on page 230

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER: CATalog?

The command queries existing files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_ul in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:

<catalog></catalog>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:MST:ENH:DPDC:CCOD:USER:CAT? queries the existing files with user coding. Response: 'user_cc1' there is one file with user coding.</pre>
Usage:	Query only
Manual operation:	See "User Coding" on page 231

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER: DELete <Filename>

The command deletes the specified files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_ul in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

The command triggers an event and therefore has no query form and no *RST value.

<pre><filename></filename></pre>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:MST:ENH:DPDC:CCOD:USER:DEL 'user_cc1' deletes the specified file with user coding.</pre>
Usage:	Setting only
Manual operation:	See "User Coding" on page 231

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:LOAD <Filename>

The command loads the specified files with stored user channel codings.

The files are stored with the fixed file extensions *.3g_ccod_ul in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

Satting parameters

<filename></filename>	string
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:MST:ENH:DPDC:CCOD:USER:LOAD 'user_cc1' loads the specified file with user coding.</pre>
Usage:	Setting only
Manual operation:	See "User Coding" on page 231

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER: STORe <Filename>

The command saves the current settings for channel coding as user channel coding in the specified file.

Enhanced Channels of the User Equipment

The files are stored with the fixed file extensions *.3g_ccod_ul in a directory of the user's choice. The directory in which the file is stored is defined with the command MMEMory:CDIR. To store the files in this directory, you only have to give the file name, without the path and the file extension.

Setting parameters:

<filename></filename>	string	
Example:	<pre>MMEM:CDIR '/var/user/temp/CcodDpchUser' selects the directory for the user channel coding files. BB:W3GP:MST:ENH:DPDC:CCOD:USER:STOR 'user_cc1' saves the current channel coding setting in file user_cc1 in directory /var/user/temp/CcodDpchUser.</pre>	
Usage:	Setting only	
Manual operation:	See "User Coding" on page 231	

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer <Layer>

The command selects the layer at which bit errors are inserted.

Parameters:

<layer></layer>	TRANsport PHYSical		
	TRANsport Transport Layer (Layer 2). This layer is only available when channel coding is active.		
	PHYSical Physical layer (Layer 1) *RST: PHYSical		
Example:	BB:W3GP:MST:ENH:DPDC:DERR:BIT:LAY PHYS selects layer 1 for entering bit errors.		
Manager			

Manual operation: See "Insert Errors On" on page 235

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:RATE <Rate>

Sets the bit error rate.

Parameters:

<rate></rate>	float		
	Range: Increment: *RST:	1E-7 to 0.5 1E-7 0.001	
Example:	BB:W3GP:MST:ENH:DPDC:DERR:BIT:RATE 1E-2 sets a bit error rate of 0.01.		
Manual operation:	See "Bit Error Rate TCH1" on page 235		

Enhanced Channels of the User Equipment

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe <State>

The command activates or deactivates bit error generation.

Bit errors are inserted into the data fields of the enhanced channels. When channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer). When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.

Parameters:

<state></state>	0 1 OFF ON
	*RST: 0
Example:	<pre>BB:W3GP:MST:ENH:DPDC:DERR:BIT:RATE 1E-2 sets a bit error rate of 0.01. BB:W3GP:MST:ENH:DPDC:DERR:BIT:LAY PHYS selects layer 1 for entering bit errors. BB:W3GP:MST:ENH:DPDC:DERR:BIT:STAT ON activates bit error generation.</pre>
Manual operation:	See "Bit Error State" on page 235

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:RATE <Rate>

Sets the block error rate.

Parameters:

<rate></rate>	float		
	Range: Increment: *RST:	1E-4 to 0.5 1E-4 0.1	
Example:	BB:W3GP:MST:ENH:DPDC:DERR:BLOC:RATE 1E-2 sets the block error rate to 0.01.		
Manual operation:	See "Block Error Rate" on page 236		

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor[:BLOCk]: STATe <State>

The command activates or deactivates block error generation. Block error generation is only possible when channel coding is activated.

During block error generation, the CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate a defective signal.

Parameters:

<State>

ON | OFF *RST: OFF Example: BB:W3GP:MST:ENH:DPDC:CCOD:STAT ON activates channel coding. BB:W3GP:MST:ENH:DPDC:DERR:BLOC:RATE 10E-2 sets the block error rate to 0.1. BB:W3GP:MST:ENH:DPDC:DERR:BLOC:STAT ON activates block error generation.

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2 <Interleaver2>

The command activates or deactivates channel coding interleaver state 2 for all the transport channels.

Interleaver state 1 can be activated and deactivated for each channel individually ([:
SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:
INTerleaver).

Note: The interleaver states do not cause the symbol rate to change

Parameters: <interleaver2></interleaver2>	0 1 OFF ON *RST: 1
Example:	BB:W3GP:MST:ENH:DPDC:INT2 OFF deactivates channel coding interleaver state 2 for all the trans- port channels.
Manual operation:	See "Interleaver 2 State" on page 234

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:ORATe <ORate>

The command queries the overall symbol rate (Overall Symbol Rate) of the enhanced channels. The value is set with the command [:SOURce<hw>]:BB:W3GPp: MSTation<st>:DPDCh:ORATE. This setting also defines the number of active channels, their symbol rates and channelization codes.

Parameters:

<orate></orate>	D15K D30K D60K D120k D240k D480k D960k D1920k D2880k D3840k D4800k D5760k *RST: D60K	
Example:	BB:W3GP:MST:ENH:DPDC:ORAT? queries the overall symbol rate of the DPDCH of user equipmen 1.	
Manual operation:	See "Overall Symbol Rate" on page 231	

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:STATe <State>

Queries the enhaced state of the station.

Enhanced Channels of the User Equipment

Parameters:			
<state></state>	0 1 OFF ON		
	*RST: 1		
Example:	BB:W3GP:MST1:ENH:DPDC:STAT?		
Manual operation:	See "Enhanced Channels State" on page 228		

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: RMATtribute <RmAttribute>

Sets data rate matching.

Parameters: <rmattribute></rmattribute>	integer		
	Range: *RST:	1 to 1024 1	
Example:	BB:W3GP:MST:ENH:DPDC:TCH:RMAT 1024 sets rate matching to 1024 for DTCH1.		
Manual operation:	See "Rate Matching Attribute" on page 234		

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:STATe <State>

The command activates/deactivates the selected transport channel.

Parameters:		
<state></state>	0 1 OFF ON	
	*RST: 0	
Example:	BB:W3GP:MST:ENH:DPDC:TCH1:STAT activates DTCH1.	
Manual operation:	See "Transport Channel State" on page 232	

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: TBCount <TbCount>

The command sets the transport block count.

Parameters:

<tbcount></tbcount>	integer		
	Range: *RST:	1 to 16 1	
Example:	BB:W3GP:MST:ENH:DPDC:TCH2:TBC 4 activates 4 transport blocks for DTCH1.		
Manual operation:	See "Number of Transport Blocks" on page 233		

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TBSize <TbSize>

Sets the size of the data blocks.

Parameters:

<tbsize></tbsize>	integer
Example:	BB:W3GP:MST:ENH:DPDC:TCH2:TBS 1024 sets the length of the transport blocks for DTCH2 to 1024.
Manual operation:	See "Transport Block Size" on page 233

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: TTINterval <TtInterval>

Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Parameters:

<ttinterval></ttinterval>	10MS 20MS 40MS
Example:	BB:W3GP:MST:ENH:DPDC:TCH2:TTIN 20ms sets that the transport channel is divided into 2 frames.
Manual operation:	See "Transport Time Interval" on page 233

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:

CRCSize <CrcSize>

The command defines the CRC length for the selected transport channel. It is also possible to deactivate checksum determination.

Parameters:

<crcsize></crcsize>	NONE 8 12 16 24 *RST: 12
Example:	BB:W3GP:MST:ENH:DPDC:TCH:CRCS NONE deactivates checksum determination for DTCH1.
Manual operation:	See "Size of CRC" on page 234

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA <Data>

Selects the data source for the transport channel.

Parameters:			
<data></data>	ZERO ONE PATTern PN9 PN11 PN15 PN16 PN20 PN21 PN23 DLISt		
	PNxx		
	The pseudo-random sequence generator is used as the data source. Different random sequence lengths can be selected.		
	DLISt		
	A data list is used. The data list is selected with the command		
	[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh: TCHannel<di0>:DATA:DSELect.</di0></hw>		
	ZERO ONE		
	Internal 0 and 1 data is used.		
	PATTern Internal data is used. The bit pattern for the data is defined by the command [:SOURce <hw>]:BB:W3GPp:MSTation: ENHanced:DPDCh:TCHannel<di0>:DATA:PATTern.</di0></hw>		
	*RST: PN9		
Example:	BB:W3GP:MST:ENH:DPDC:TCH2:DATA PATT selects as the data source for the data fields of DTCH2 of user equipment 1, the bit pattern defined with the following command. BB:W3GP:MST:ENH:DPDC:TCH2:DATA:PATT #H3F, 8 defines the bit pattern.		
Manual operation:	See "Data Source" on page 232		

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA: DSELect <DSelect>

The command selects the data list for the enhanced channels for the DLISt selection.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

<dselect></dselect>	string
Example:	<pre>BB:W3GP:MST:ENH:DPDC:TCH1:DATA DLIS selects the Data Lists data source. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:MST:ENH:DPDC:TCH1:DATA:DSEL 'TCH1' selects the file tch1 as the data source.</pre>

Manual operation: See "Data Source" on page 232

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA: PATTern <Pattern>

The command determines the bit pattern for the PATTern data source selection for transport channels.

Parameters:

<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:		MST:ENH:DPDC:TCH0:DATA:PATT #H3F, 8 bit pattern for DCCH.
Manual operation:	See "Data S	Source" on page 232

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: EPRotection <EProtection>

The command determines the error protection.

Parameters:

<eprotection></eprotection>	NONE CON2 CON3 TURBo3 NONE No error protection. TURBo3		
	Turbo Coder of rate 1/3 in accordance with the 3GPP specifica- tions.		
	CON2 CON3 Convolution Coder of rate $\frac{1}{2}$ or 1/3 with generator polynomials defined by 3GPP.		
	*RST: CON1/3		
Example:	BB:W3GP:MST:ENH:DPDC:TCH1:EPR NONE error protection is deactivated.		
Manual operation:	See "Error Protection" on page 234		

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>: INTerleaver <Interleaver>

The command activates or deactivates channel coding interleaver state 1 for the selected channel. Interleaver state 1 can be activated and deactivated for each channel individually. The channel is selected via the suffix at TCHannel.

Interleaver state 2 can only be activated or deactivated for all the channels together
([:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2).

Parameters:

<Interleaver>

0 1 OFF	ON
*RST:	1

Enhanced Channels of the User Equipment

Example:	BB:W3GP:MST:ENH:DPDC:TCH5:INT1 OFF			
	deactivates channel coding interleaver state 1 for TCH 5.			
Manual operation:	See "Interleaver 1 State" on page 234			

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:STATe <State>

The command activates or deactivates channel coding for the PCPCH.

When channel coding is active, the symbol rate is limited to the range between 15 and 120 ksps. Values above this limit are automatically set to 120 ksps.

Parameters:

<state></state>	ON OFF	
	*RST:	0
Example:	selects chan BB:W3GP:M	ST:ENH:PCPC:CCOD:TYPE TB168 nel coding type CPCH RMC (TB size 168 bits). ST:ENH:PCPC:CCOD:STAT ON annel coding.
Manual operation:	See "Channe	el Coding State" on page 258

[:SOURce<hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:TYPE <Type>

The command selects the channel coding scheme in accordance with the 3GPP specification.

Parameters:

<type></type>	TB168 TB360
	TB168 CPCH RMC (TB size 168 bits)
	TB360 CPCH RMC (TB size 360 bits)
	*RST: TB168
Example:	BB:W3GP:MST:ENH:PCPC:CCOD:TYPE TB168 selects channel coding scheme RMC 168 bits.
Manual operation:	See "Channel Coding Type" on page 258

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:STATe <State>

The command activates or deactivates channel coding for the PRACH.

Parameters:

<state></state>	ON OFF	
	*RST:	0

Daramatara

Setting up Test Cases according to TS 25.141

Example:	BB:W3GP:MST:ENH:PRAC:CCOD:TYPE TB168
	selects channel coding type RACH RMC (TB size 168 bits).
	BB:W3GP:MST:ENH:PRAC:CCOD:STAT ON
	activates channel coding.

Manual operation: See "Channel Coding State" on page 246

[:SOURce<hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:TYPE <Type>

The command selects the channel coding scheme in accordance with the 3GPP specification.

Parameters:		
<type></type>	TB168 TB360 TU168 TU360	
	TB168 RACH RMC (TB size 168 bits)	
	TB360 RACH RMC (TB size 360 bits) *RST: TB168	
Example:	BB:W3GP:MST:ENH:PRAC:CCOD:TYPE TB168 selects channel coding scheme RMC 168 bits.	
Manual operation:	See "Channel Coding Type" on page 246	

8.11 Setting up Test Cases according to TS 25.141

The signal generator gives you the opportunity to generate predefined settings which enable tests on base stations in conformance with the 3G standard 3GPP FDD. It offers a selection of predefined settings according to Test Cases in TS 25.141. The settings take effect only after execution of command [:SOURce]:BB:W3GPp: TS25141:TCASe:EXECute. For most test cases, the parameters of one or more of the subsystems SOURce:AWGN, SOURce:W3GPp, SOURce:DM and SOURce:FSIM are adjusted.

The test setups and equipment requirements for each Test Case are described in Chapter 7.1, "Introduction", on page 277.

Unlike most of the other commands of the SOURCe:BB:W3GPp subsystem, key word SOURce is without suffix. Signal routing is possible only for Test Cases that do not use diversity and is performed via command [:SOURce]:BB:W3GPp:TS25141:ROUTe.

Most of the commands are setting commands in mode "User definable" and respectively are query only in mode "According to Standard", see the description of the command [:SOURce]:BB:W3GPp:TS25141:EMODe. The edit mode "According to Standard" puts the required limits in the value ranges of the related commands.

[:SOURce]:BB:W3GPp:TS25141:AWGN:CNRatio	547
[:SOURce]:BB:W3GPp:TS25141:AWGN:ENRatio	
[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe	
[:SOURce]:BB:W3GPp:TS25141:AWGN:RBLock:RATE	
[:SOURce]:BB:W3GPp:TS25141:AWGN:RPDetection:RATE	
[:SOURce]:BB:W3GPp:TS25141:AWGN:STATe	
[:SOURce]:BB:W3GPp:TS25141:BSPClass	
[:SOURce]:BB:W3GPp:TS25141:BSSignal:FREQuency	
[:SOURce]:BB:W3GPp:TS25141:BSSignal:POWer	
[:SOURce]:BB:W3GPp:TS25141:EMODe	550
[:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:BWIDth	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CNRatio	551
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:FOFFset	551
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:POWer	552
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:STATe	552
[:SOURce]:BB:W3GPp:TS25141:IFSignal:FOFFset	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:FOFFset	553
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:POWer	553
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:STATe	554
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:TYPE	554
[:SOURce]:BB:W3GPp:TS25141:IFSignal:POWer	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:SETTing:TMODel:BSTation	555
[:SOURce]:BB:W3GPp:TS25141:IFSignal:STATe	555
[:SOURce]:BB:W3GPp:TS25141:IFSignal:TYPE	556
[:SOURce]:BB:W3GPp:TS25141:ROUTe	
[:SOURce]:BB:W3GPp:TS25141:RXDiversity	
[:SOURce]:BB:W3GPp:TS25141:SCODe	
[:SOURce]:BB:W3GPp:TS25141:SCODe:MODE	
[:SOURce]:BB:W3GPp:TS25141:TCASe	
[:SOURce]:BB:W3GPp:TS25141:TCASe:EXECute	
[:SOURce]:BB:W3GPp:TS25141:TRIGger	
[:SOURce]:BB:W3GPp:TS25141:TRIGger:OUTPut	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:BTYPe	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DCRatio	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:SFORmat	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:DSELect	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:PATTern	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:DSELect	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PDSTeps	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PUSTeps	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:CCODing:TYPE	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BIT:RATE	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BLOCk:RATE	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:ORATe [:SOURce]:BB:W3GPp:TS25141:WSIGnal:FREQuency	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:OBANd	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PCPCh:CCODing:TYPE	

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:POWer	565
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PRACh:CCODing:TYPE	565
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:STATe	565
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:TRIGger[:EXTernal]:DELay	566

[:SOURce]:BB:W3GPp:TS25141:AWGN:CNRatio <CnRatio>

Sets/queries the carrier/noise ratio.

Parameters:			
<cnratio></cnratio>	float		
	Range: -50 to 45 Increment: 0.01 *RST: -16.8		
Example:	BB:W3GP:TS25141:TCAS TC73		
	selects test case 7.3.		
	BB:W3GP:TS25141:EMOD STAN		
	selects mode "According to Standard". Only settings in compli-		
	ance with the standard can be made.		
	BB:W3GP:TS25141:AWGN:POW:NOIS?		
	queries the noise level of the interfering signal.		
	Response: -73		
	the noise level of the interfering signal is -73 dB.		
	BB:W3GP:TS25141:AWGN:CNR?		
	queries the signal/noise ratio of the interfering signal.		
	Response: -16.80		
	the signal/noise ratio of the interfering signal is -16.8 dB.		
Manual operation:	See "C/N - Test Case 7.3" on page 294		

[:SOURce]:BB:W3GPp:TS25141:AWGN:ENRatio < EnRatio>

Sets/queries the ratio of bit energy to noise power density.

Parameters:

<enratio></enratio>	float		
	Range: Increment: *RST:	-80 dB to 80 dB 0.01 dB 8.7 dB	
Example:	BB:W3GP:1	S25141:TCAS TC821	
	selects test	case 8.2.1.	
	BB:W3GP:TS25141:EMOD STAN		
	selects mode "According to Standard". Only settings in compli-		
	ance with th	le standard can be made.	
	BB:W3GP:I	S25141:AWGN:ENR?	
	queries the ratio of bit energy to noise power density of the inter- fering signal.		
	Response:	8.70	
	the E/N ratio	o of the interfering signal is 8.7 dB.	

Manual operation: See "E_b to N₀ - Test Case 8.x" on page 316

[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe <Noise>

Sets/queries the noise level.

Parameters: <noise></noise>	float Increment: 0.01	
Example:	<pre>see [:SOURce]:BB:W3GPp:TS25141:AWGN:CNRatio on page 547</pre>	
Manual operation:	See "Power Level - Test Case 7.3" on page 294	

[:SOURce]:BB:W3GPp:TS25141:AWGN:RBLock:RATE <Rate>

Sets the required block error rate. The possible selection depends on the selected fading configuration.

Parameters: <rate></rate>	B0 B01 B001 B0001 *RST: B001	
Example:	BB:W3GP:TS25141:TCAS TC893 selects test case 8.9.3. BB:W3GP:TS25141:EMOD STAN selects mode "According to Standard". Only settings in compli- ance with the standard can be made. BB:W3GP:TS25141:AWGN:RBL:RATE B01 sets the required block error rate to < 0.01.	
Manual operation:	See "Required BLER - Test Case 8.x" on page 315	

[:SOURce]:BB:W3GPp:TS25141:AWGN:RPDetection:RATE <Rate>

Sets the required probability of detection of preamble (Pd). The selection determines the ratio E_b/N_0 .

Parameters:

<rate></rate>	PD099 PD0999
	*RST: PD099
Example:	BB:W3GP:TS25141:TCAS TC892
	selects test case 8.9.2.
	BB:W3GP:TS25141:EMOD STAN
	selects mode "According to Standard". Only settings in compli-
	ance with the standard can be made.
	BB:W3GP:TS25141:AWGN:RPD:RATE PD099
	sets the required probability of detection of preamble to > 0.99. The E/N ratio of the interfering signal is -8.8 dB.

Manual operation: See "Required Pd - Test Case 8.x" on page 328

[:SOURce]:BB:W3GPp:TS25141:AWGN:STATe <State>

Enables/disables the generation of the AWGN signal.

Parameters: <state></state>	0 1 OFF ON *RST: 1
Example:	BB:W3GP:TS25141:TCAS TC892 selects test case 8.9.2. BB:W3GP:TS25141:EMOD USER selects mode "User definable". Also settings that are not in com- pliance with the standard can be made. BB:W3GP:TS25141:AWGN:STAT OFF disables the generation of the AWGN signal.
Manual operation:	See "AWGN State - Test Case 8.x" on page 315

[:SOURce]:BB:W3GPp:TS25141:BSPClass <BspClass>

Selects the base station power class.

Parameters: <bspclass></bspclass>	WIDE MEDium LOCal *RST: WIDE	
Example:	BB:W3GP:TS25141:BSPC WIDE the base station under test is a wide area base station.	
Manual operation:	See "Power Class" on page 285	

[:SOURce]:BB:W3GPp:TS25141:BSSignal:FREQuency <Frequency>

Sets the RF frequency of the base station.

Parameters: <frequency></frequency>	float		
	Range: *RST:	100 kHz to 6 GHz 1.0 GHz	
Example:	BB:W3GP:TS25141:BSS:FREQ 1GHz the frequency of the base station under test is 1 GHz.		
Manual operation:	See "BS Frequency - Test Case 6.6" on page 347		

[:SOURce]:BB:W3GPp:TS25141:BSSignal:POWer <Power>

Sets the RF power of the base station.

Parameters: <power></power>	float Increment: 0.01 *RST: -30 dBm
Example:	BB:W3GP:TS25141:TCAS TC66 selects test case 6.6. BB:W3GP:TS25141:BSS:POW -30 the power of the base station under test is -30 dBm.
Manual operation:	See "BS RF Power - Test Case 6.6" on page 347

[:SOURce]:BB:W3GPp:TS25141:EMODe <EMode>

Selects the edit mode for the configuration of the test cases.

Parameters:		
<emode></emode>	STANdard USER	
	STANdard Edit mode "According to Standard". Only settings in compliance	
	with TS 25.141 are possible. All other parameters are preset.	
	USER	
	Edit mode "User definable". A wider range of settings is possible	
	*RST: STANdard	
Example:	BB:W3GP:TS25141:EMOD USER selects edit mode "User definable".	
Manual operation:	See "Edit Mode" on page 283	

[:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe <State>

Queries the state of the Fading Simulator.

Parameters	s:
------------	----

<state></state>	0 1 OFF ON
	*RST: 0
Example:	BB:W3GP:TS25141:TCAS TC892
	selects test case 8.9.2.
	BB:W3GP:TS25141:FSIM:STAT?
	queries the state of the fading simulator.
	Response: 0
	the fading simulator is disabled.
Manual operation:	See "Fading State - Test Case 8.2.1" on page 316

[:SOURce]:BB:W3GPp:TS25141:IFSignal:BWIDth <BWidth>

Selects the interferer scenario.

Parameters: <bwidth></bwidth>	WIDE NARRow *RST: WIDE
Example:	BB:W3GP:TS25141:TCAS TC76 selects test case 7.6. BB:W3GP:TS25141:IFS:BWID WIDE selects a 3GPP FDD uplink interfering signal 1
Manual operation:	See "Interferer Bandwidth Type - Test Case 7.6" on page 309

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CNRatio < CnRatio>

In test case 7.4, sets the power ratio of wanted signal to interfering signal.

In test case 6.6, sets the power ratio of interfering signal to wanted signal.

Parameters:

<cnratio></cnratio>	float	
	Range: Increment:	-80 dB to 80 dB 0.01 dB
	*RST:	-63 dB
Example:		IS25141:TCAS TC74
	selects test	case 7.4.
	BB:W3GP:1	IS25141:EMOD STAN
		de "According to Standard". Only settings in compli-
	ance with th	ne standard can be made.
	BB:W3GP:T	IS25141:IFS:CNR?
	queries the	power ratio.
	Response:	:-63.0
	the signal/n	oise ratio of the interfering signal is -63 dB.
Manual operation:	See "C to I	- Test Case 7.4" on page 297

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:FOFFset <FOffset>

Sets frequency offset of the CW interfering signal versus the wanted signal RF frequency.

Parameters:

<foffset></foffset>	float		
	Increment: *RST:	0.01 10 MHz	
Example:	see [:SOUR on page 552	<pre>Rce]:BB:W3GPp:TS25141:IFSignal:CW:STATe 2</pre>	
Manual operation:	See "Interferer 1 and 2 Frequency Offset - Test Case 7.6" on page 309		

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:POWer < Power>

Sets the RF level of the CW interfering signal.

Parameters: <power></power>	float	
	*RST:	-48 dBm
Example:	see [:SOUR on page 552	<pre>Rce]:BB:W3GPp:TS25141:IFSignal:CW:STATe 2</pre>
Manual operation:	See "Interfe on page 310	rer 1 and 2 Power Level - Test Case 7.6")

[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:STATe <State>

This command enable/disables the CW interfering signal. In mode "According to Standard" (:SOURce:BB:W3GPp:TS25141:EMODe STANdard) the value is fixed to ON.

Sets commands :SOURce2:AWGN:CNRatio and :SOURce2:AWGN:POWer:NOISe after execution of :SOURce:BB:W3GP:TS25141:TCAS:EXEC

D -	ira	 	 _

Falameters.	
<state></state>	0 1 OFF ON
	*RST: 1
Example:	BB:W3GP:TS25141:TCAS TC76
	selects test case 7.6.
	BB:W3GP:TS25141:EMOD STAN
	selects mode According to Standard. Only settings in compli-
	ance with the standard can be made.
	BB:W3GP:TS25141:IFS:IFS:BWID WIDE
	selects interferer scenario wideband.
	BB:W3GP:TS25141:IFS:CW:FOFF?
	queries the frequency offset of the CW interferer.
	Response: 10000000
	the frequency offset is 10 MHz.
	BB:W3GP:TS25141:IFS:BWID NARR
	BB:W3GP:TS25141:IFS:CW:POW?
	queries the RF level of the CW interferer.
	Response: -47
	the RF level is -47.00 dBm.
	BB:W3GP:TS25141:IFS:CW:STAT?
	queries the state of the CW interferer.
	Response: 1
	the CW interferer is enabled.
•• •	

Manual operation: See "Interferer 1 and 2 State - Test Case 7.6" on page 309

[:SOURce]:BB:W3GPp:TS25141:IFSignal:FOFFset <FOffset>

Sets frequency offset of the interfering signal versus the wanted signal RF frequency.).

Parameters: <foffset></foffset>	float	
	Range:-40 MHz to 40 MHzIncrement:0.01 Hz*RST:1 MHz	
Example:	BB:W3GP:TS25141:TCAS TC74 selects test case 7.4. BB:W3GP:TS25141:EMOD STAN selects mode "According to Standard". Only settings in com ance with the standard can be made. BB:W3GP:TS25141:IFS:FOFF 0.5 MHz sets the frequency offset of the interferer to 5 MHz.	ıpli-
Manual operation:	See "Frequency Offset - Test Case 7.4" on page 297	

[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:FOFFset <FOffset>

Sets frequency offset of the modulated interfering signal versus the wanted signal RF frequency.

Parameters:

<foffset></foffset>	float Range: -40 MHz to 40 MHz Increment: 0.01 Hz *RST: 20 MHz
Example:	BB:W3GP:TS25141:TCAS TC76 selects test case 7.6. BB:W3GP:TS25141:EMOD STAN selects mode According to Standard. Only settings in compli- ance with the standard can be made. BB:W3GP:TS25141:IFS:BWID WIDE selects interferer scenario wideband. BB:W3GP:TS25141:IFS:MOD:FOFF? queries the frequency offset of the modulated interferer. Response: 2000000 the frequency offset is 20 MHz.
Manual operation:	See "Interferer 1 and 2 Frequency Offset - Test Case 7.6" on page 309

[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:POWer <Power>

Sets the RF level of the modulated interfering signal.

float

Parameters:

<Power>

*RST: -48 dBm

Example:	BB:W3GP:TS25141:TCAS TC76				
	selects test case 7.6.				
	BB:W3GP:TS25141:EMOD STAN				
	selects mode "According to Standard". Only settings in compli-				
	ance with the standard can be made.				
	BB:W3GP:TS25141:IFS:BWID NARR				
	selects interferer scenario narrowband.				
	BB:W3GP:TS25141:IFS:MOD:POW?				
	queries the RF level of the modulated interferer.				
	Response: -47				
	the RF level is 47.00 dBm.				
	BB:W3GP:TS25141:IFS:MOD:TYPE?				
	queries the type of the modulated interferer.				
	Response: GMSK				
	the modulation type is GMSK.				
	BB:W3GP:TS25141:IFS:MOD:STAT?				
	queries the state of the modulated interferer.				
	Response: 1				
	the modulated interferer is enabled.				
Manual operation:	See "Interferer 1 and 2 Power Level - Test Case 7.6" on page 310				

[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:STATe <State>

Enable/disables the modulated interfering signal.

Parameters: <state></state>	0 1 OFF ON *RST: 1
Example:	<pre>see [:SOURce]:BB:W3GPp:TS25141:IFSignal: MODulated:POWer on page 553</pre>
Manual operation:	See "Interferer 1 and 2 State - Test Case 7.6" on page 309

[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:TYPE <Type>

Selects the type of modulation for the interfering uplink signal in the second path.

Parameters: <type></type>	WCDMa C *RST:	W GMSK QPSK WCDMa
Example:		Rce]:BB:W3GPp:TS25141:IFSignal: POWer on page 553
Manual operation:	See "Interfe	rer 2 Modulation - Test Case 7.6" on page 310

[:SOURce]:BB:W3GPp:TS25141:IFSignal:POWer < Power>

Sets the RF level of the interfering signal.

Parameters: <pre><power></power></pre>	float
Example:	BB:W3GP:TS25141:TCAS TC75 selects test case 7.6. BB:W3GP:TS25141:EMOD STAN selects mode "According to Standard". Only settings in compli- ance with the standard can be made. BB:W3GP:TS25141:WSIG:BTYP NARR selects blocking scenario narrowband. BB:W3GP:TS25141:IFS:POW? queries the RF level of the CW interferer. Response: -47 the RF level is -47.00 dBm.
Manual operation:	See "Power Level - Test Case 7.5" on page 301

[:SOURce]:BB:W3GPp:TS25141:IFSignal:SETTing:TMODel:BSTation <BStation>

Selects the interfering signal from a list of test models in accordance with TS 25.141. All test models refer to the predefined downlink configurations.

Parameters: <bstation></bstation>	TM164 TM116 TM132 TM2 TM316 TM332 TM4 TM538 TM528 TM58		
Example:	BB:W3GP:TS25141:TCAS TC66		
	selects test case 6.6. BB:W3GP:TS25141:EMOD_USER		

DD.WJGI.IDZJIII.DHOD ODDIK
selects mode "User Definable".
BB:W3GP:TS25141:IFS:SETT:TMOD:BST TM116
the interfering signal is generated according to test model Test
Model 1; 16 Channels.

Manual operation: See "Interferer Mode - Test Case 6.6" on page 348

[:SOURce]:BB:W3GPp:TS25141:IFSignal:STATe <State>

Enable/disables the modulated interfering signal.

D	ar	2	m	٥ſ	0	rs	
	a	a		CI	C.C	13	•

<State>

0 | 1 | OFF | ON *RST: 1

Example:	BB:W3GP:TS25141:TCAS TC75 selects test case 7.5. BB:W3GP:TS25141:EMOD STAN selects mode "According to Standard". Only settings in compli- ance with the standard can be made. BB:W3GP:TS25141:IFS:STAT? queries the state of the interferer. Response: 1 the interferer is enabled.
Manual operation:	See "Interferer State - Test Case 7.4" on page 297

[:SOURce]:BB:W3GPp:TS25141:IFSignal:TYPE <Type>

Selects the type of modulation for the interfering signal.

Parameters: <type></type>	WCDMa CW GMSK QPSK *RST: WCDMa
Example:	BB:W3GP:TS25141:TCAS TC75 selects test case 7.5. BB:W3GP:TS25141:EMOD STAN BB:W3GP:TS25141:IFS:TYPE? queries the type of the interferer. Response: CW the modulation type is CW interferer.
Manual operation:	See "Interferer Modulation - Test Case 7.4" on page 297

[:SOURce]:BB:W3GPp:TS25141:ROUTe <Route>

Selects the signal routing for baseband A signal which in most test cases represents the wanted signal (exception test case 6.6). The command is only available for two-path-instruments and only for test cases that do not use both paths anyway.

Parameters:		
<route></route>	A B	
	*RST:	A
Example:		S25141:ROUT B d signal of path A is introduced into path B.
Manual operation:	See "Baseba	and A Signal Routing" on page 284

[:SOURce]:BB:W3GPp:TS25141:RXDiversity <RxDiversity>

Sets the signal generator according to the base station diversity processing capability. The command is only available for two-path-instruments and only for test cases that do not use both paths anyway.

Parameters:				
<rxdiversity></rxdiversity>	0 1 OFF ON			
	*RST: 0			
Example:	BB:W3GP:TS25141:RXD ON			
	the baseband signal of path A is introduced into both paths.			
Manual operation:	See "Diversity" on page 284			

[:SOURce]:BB:W3GPp:TS25141:SCODe <SCode>

Sets the scrambling code. The value range depends on whether the generator is used in uplink or downlink direction (test case 6.6) according to the selected test case.

Parameters:	
-------------	--

<scode></scode>	integer	
	*RST:	#H0
Example:	BB:W3GP:TS25141:SCOD #H5FFF sets scrambling code #H5FFF.	
Manual operation:	See "Scrambling Code (hex)" on page 285	

[:SOURce]:BB:W3GPp:TS25141:SCODe:MODE <Mode>

Sets the type for the scrambling code for the uplink direction. In downlink direction (test case 6.6), the scrambling generator can be switched on and off.

LONG | SHORt

Parameters:	
<mode></mode>	OFF ON

Example:	BB:W3GP:TS25141:SCOD:MODE OFF
	deactivates the scrambling code generator.

Manual operation: See "Scrambling Mode" on page 285

[:SOURce]:BB:W3GPp:TS25141:TCASe <TCase>

Selects a test case defined by the standard. The signal generator is preset according to the selected standard.

Depending on the selected test case the parameters of the TS25141 commands are preset. For most test cases also the parameters of one or more of the subsystems SOURCe:AWGN, SOURCe:W3GPp, SOURCe:DM and SOURCe:FSIM are preset. The preset parameters are activated with command :BB:W3GP:TS25141:TCAS:EXEC

Parameters:

<TCase>

TC642 | TC66 | TC72 | TC73 | TC74 | TC75 | TC76 | TC78 | TC821 | TC831 | TC832 | TC833 | TC834 | TC84 | TC85 | TC86 | TC881 | TC882 | TC883 | TC884 | TC891 | TC892 | TC893 | TC894 *RST: TC642

Example:BB:W3GP:TS25141:TCASTC73selects the test case 7.3, Dynamic Range.

Manual operation: See "Test Case" on page 281

[:SOURce]:BB:W3GPp:TS25141:TCASe:EXECute

The command activates the current settings of the test case wizard. Signal generation is started at the first trigger received by the generator. The RF output is not activated / deactivated by this command, so care has to be taken that "RF State" is "On" (OUTPut:STATE ON) at the beginning of the measurement.

The command activates the preset parameters of the TS25141 commands and - for most test cases - also the parameters of one or more of the subsystems SOURCe:AWGN, SOURCe:W3GPp, SOURce:DM and SOURCe:FSIM.

Example:	BB:W3GP:TS25141:TCAS TC73
	selects the settings for test case 7.3, Dynamic Range.
	BB:W3GP:TS25141:BSPC MED
	sets the base station power class Medium Range BS.
	BB:W3GP:TS25141:SCOD #H000FFF
	sets the uplink scrambling code 'H000FFF.
	BB:W3GP:TS25141:WSIG:FREQ 1710MHz
	sets the wanted signal frequency.
	BB:W3GP:TS25141:TCAS:EXEC
	activates the settings for test case 7.3, Dynamic Range. For all
	other parameters the preset values are used.
	OUTP ON
	activates RF output A.
Heere	Friend
Usage:	Event
Manual operation:	See "Apply Settings" on page 286

[:SOURce]:BB:W3GPp:TS25141:TRIGger <Trigger>

Selects the trigger mode. The trigger is used to synchronize the signal generator to the other equipment.

Parameters: <trigger></trigger>	AUTO PRESet SINGle *RST: AUTO
Example:	BB:W3GP:TS25141:TRIG AUTO selects customization of trigger mode for the selected test case
Manual operation:	See "Trigger Configuration" on page 284

[:SOURce]:BB:W3GPp:TS25141:TRIGger:OUTPut <Output>

Defines the signal for the selected marker output.

Parameters: <output></output>	AUTO PRE *RST:	ESet AUTO
Example:		S25141:TRIG:OUTP PRES the current marker setting are kept independently of test case.
Manual operation:	See "Marke	r Configuration" on page 284

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:BTYPe <BType>

Selects the type of blocking scenario and determines the type of interfering signal and its level.

Parameters:			
<btype></btype>	WIDE COLocated NARRow		
	*RST: WIDE		
Example:	BB:W3GP:TS25141:TCAS TC75 selects the settings for test case 7.5, Blocking Characteristics. BB:W3GP:TS25141:WSIG:BTYP NARR		
	selects the GMSK (270.833 kHz) interfering signal		
Manual operation:	See "Blocking Scenario - Test Case 7.5" on page 300		

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DCRatio < DcRatio>

Sets channel power ratio of DPCCH to DPDCH.

Parameters:

<dcratio></dcratio>	float	
	Range: Increment: *RST:	-80 to 80 0.01 0
Example:	selects the s BB:W3GP:T	S25141:TCAS TC642 settings for test case 6.4.2, Power Control Steps. S25141:WSIG:DCR -3 dB of -3 dB for DPCCH power/DPDCH power
Manual operation:	See "Power on page 342	Ratio DPCCH to DPDCH - Test Case 6.4.2" 2

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:SFORmat <SFormat>

Sets the slot format for the DPCCH. The slot format defines the FBI mode and the TFCI status.

Parameters: <sformat></sformat>	float Range: *RST:	0 to 5 0
Example:	BB:W3GP:TS25141:TCAS TC642 selects the settings for test case 6.4.2, Power Control Steps. BB:W3GP:TS25141:WSIG:DPCC:SFOR 3 selects slot format 3 for the DPCCH	
Manual operation:	See "Slot F	ormat DPCCH - Test Case 6.4.2" on page 341

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa <RData>

Sets the TPC repeat pattern for verification of the base stations power control steps.

Parameters: <rdata></rdata>	SINGle A0 *RST:	GGRegated ONE ZERO PATTern DLISt SINGle
Example:	selects the	TS25141:TCAS TC642 settings for test case 6.4.2, Power Control Steps. TS25141:WSIG:DPCC:TPC:RDAT SING 01 pattern
Manual operation:	See "TPC F	Repeat Pattern - Test Case 6.4.2" on page 343

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:DSELect <DSelect>

Selects the data list when the DLISt data source is selected for the TPC repeat pattern of the DPCCH.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, only the file name has to be given, without the path and the file extension.

Parameters:

<dselect></dselect>	<data_list_name></data_list_name>
Example:	<pre>BB:W3GP:TS25141:TCAS TC642 BB:W3GP:TS25141:WSIG:DPCC:TPC:RDAT DLIS selects the data source DLISt MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:TS25141:WSIG:DPCC:TPC:RDAT:DSEL 'dpcch_tpc_1' selects the data list dpcch_tpc1.</pre>

Manual operation: See "TPC Repeat Pattern - Test Case 6.4.2" on page 343

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:PATTern <Pattern>

Determines the bit pattern for the PATTern data source selection.

Parameters:

<pattern></pattern>	64 bits	
	*RST:	#H0,1
Example:	BB:W3GP:T selects the BB:W3GP:T #HF0C20,1	ES25141:TCAS TC642 ES25141:WSIG:DPCC:TPC:RDAT PATT data source pattern ES25141:WSIG:DPCC:TPC:RDAT:PATT 19 TPC pattern

Manual operation: See "TPC Repeat Pattern - Test Case 6.4.2" on page 343

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa <SData>

Sets the TPC pattern for initialization of the base stations power level.

Parameters:			
<sdata></sdata>	PMAX DLISt		
	РМАХ		
	Maximum Power Less n Steps		
	DLISt		
	The TPC start pattern is taken from a data list.		
	*RST: PMAX		
Example:	BB:W3GP:TS25141:TCAS TC642		
	<pre>selects the settings for test case 6.4.2, Power Control Steps. BB:W3GP:TS25141:WSIG:DPCC:TPC:SDAT DLIS selects the data source data list for TPC start pattern. MMEM:CDIR '/var/user/temp/IQData' selects the directory for the data lists. BB:W3GP:TS25141:WSIG:DPCC:TPC:SDAT:DSEL 'dpcch_tpc_s' selects the data list dpcch_tpcs.</pre>		
	BB:W3GP:TS25141:WSIG:DPCC:TPC:SDAT PMAX		
	selects the pattern "Max. Pow. Less N Steps"		
BB:W3GP:TS25141:WSIG:DPCC:TPC:SDAT:PUST 1			
	defines 100 power up bits. The base station is (presumably) set		
	to maximum transmit power. BB:W3GP:TS25141:WSIG:DPCC:TPC:SDAT:PDST_10		
	defines 10 power down bits. The base station is set to two power steps below its maximum transmit power. The TPC start patter is 110 bits long.		
Manual operation:	See "TPC Start Pattern - Test Case 6.4.2" on page 342		

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:DSELect <DSelect>

Selects the data list when the DLISt data source is selected for the TPC start pattern of the DPCCH.

The files are stored with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. To access the files in this directory, only the file name has to be given, without the path and the file extension.

Parameters:

<dselect></dselect>	<data_list_name></data_list_name>
Example:	<pre>see [:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh: TPC:SDATa on page 561</pre>
Manual operation:	See "TPC Start Pattern - Test Case 6.4.2" on page 342

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PDSTeps <PdSteps>

Sets the number of power down bits in the TPC start pattern.

Parameters:

<pdsteps></pdsteps>	integer	
	Range: *RST:	0 to 1000 1
Example:	-	Rce]:BB:W3GPp:TS25141:WSIGnal:DPCCh: on page 561
Manual operation:	See "TPC P	Power Down Steps - Test Case 6.4.2" on page 343

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PUSTeps <PuSteps>

Sets the number of power up bits in the TPC start pattern.

Parameters:

<pusteps></pusteps>	integer Range: *RST:	0 to 1000 1
Example:	-	<pre>Rce]:BB:W3GPp:TS25141:WSIGnal:DPCCh: a on page 561</pre>

Manual operation: See "TPC Power Up Steps - Test Case 6.4.2" on page 343

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:CCODing:TYPE <Type>

Selects the channel coding scheme in accordance with the 3GPP specification.

Parameters:			
<type></type>	M12K2 M64K M144k M384k AMR		
	M12K2 M64K M144K M384K Measurement channel with an input data bit rate of respectively 12.2 ksps, 64 ksps, 144 ksps and 384 ksps AMR		
	Channel coding for the AMR Coder (coding a voice channel)		
	*RST: M12K2		
Example:	BB:W3GP:TS25141:WSIG:DPDC:CCOD:TYPE M144K selects channel coding scheme RMC 144 kbps.		
Manual operation:	See "RMC - Receiver Tests" on page 290		

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BIT:RATE <Rate>

Sets the bit error rate.

.

_

Parameters:		
<rate></rate>	float	
	*RST:	0.0
Example:		TS25141:WSIG:DPDC:DERR:BIT:RATE 1E-2 ror rate of 0.01.
Manual operation:	See "Bit Err	or Rate - Test Case 7.8" on page 312

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BLOCk:RATE <Rate>

Sets the block error rate.

Parameters:

<rate></rate>	float		
	Range: Increment: *RST:		
Example:		S25141:WSIG:DPDC:DERR:BLOC:RATE 1E-2 ror rate of 0.01.	
Manual operation:	See "Block Error Rate - Test Case 7.8" on page 313		

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:ORATe <ORate>

Sets the overall symbol rate.

Parameters:

<ORate>

D15K | D30K | D60K | D120k | D240k | D480k | D960k | D1920k | D2880k | D3840k | D4800k | D5760k 15 ksps ... 6 x 960 ksps *RST: D60K

Example:	BB:W3GP:TS25141:TCAS TC642 selects the settings for test case 6.4.2, Power Control Steps. BB:W3GP:TS25141:WSIG:DPDC:ORAT D15K sets the overall symbol rate to 15 ksps. Only DPDCH1 is active, the symbol rate is 15 ksps and the channelization code is 64.
Manual operation:	See "Overall Symbol Rate - Test Case 6.4.2" on page 342

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:FREQuency <Frequency>

The command sets the RF frequency of the wanted signal.

Parameters:		
<frequency></frequency>	float	
	Range: Increment: *RST:	100E3 to 6E9 0.01 1.95E9
Example:		S25141:WSIG:FREQ 2.5GHz ency of 2.5 GHz for the wanted signal.
Manual operation:	See "Wanted Signal Frequency - Receiver Tests" on page 290	

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:OBANd <OBand>

Selects the operating band of the base station for "Wideband Blocking". The operating band is required for calculation of power levels and interferer modulation.

Param	eters:
-------	--------

<oband></oband>	V V V *RST: I
Example:	BB:W3GP:TS25141:TCAS TC75 selects the settings for test case 7.5, Blocking Characteristics. BB:W3GP:TS25141:EMOD STAN BB:W3GP:TS25141:WSIG:BTYP WIDE selects blocking scenario wideband.
	BB:W3GP:TS25141:WSIG:OBAN III selects operating band III.
Manual operation:	See "Operating Band - Test Case 7.5" on page 300

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PCPCh:CCODing:TYPE <Type>

Selects the Transport Block Size, 168 bits or 360 bits.

Parameters:

<Type>

TB168 | TB360 *RST: TB168

Example: BB:W3GP:TS25141:TCAS TC893 selects the settings for test case 8.9.3, Demodulation of CPCH Message in Static Propagation Conditions. BB:W3GP:TS25141:WSIG:PCPC:CCOD:TYPE TB168 selects transport block size 168 bits.

```
Manual operation: See "Transport Block Size (TB) - Test Case 8.9.3" on page 338
```

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:POWer < Power>

Sets the RF level of the wanted signal.

Parameters: <power></power>	float Increment: 0.01 *RST: -110.3
Example:	BB:W3GP:TS25141:WSIG:POW? queries the RF level of the wanted signal. Response: -103.1 the RF level is -103.1 dBm
Manual operation:	See "Wanted Signal Level - Receiver Tests" on page 290

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PRACh:CCODing:TYPE <Type>

Selects the Transport Block Size to 168 bits or to 360 bits.

Parameters:	
<type></type>	TB168 TB360
	*RST: TB168
Example:	BB:W3GP:TS25141:TCAS TC883 selects the settings for test case 8.8.3, Demodulation of RACH Message in Static Propagation Conditions. BB:W3GP:TS25141:WSIG:PRAC:CCOD:TYPE TB168 selects transport block size 168 bits.
Manual operation:	See "Transport Block Size - Test Case 8.8.x" on page 334

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:STATe <State>

Enables/disables the generation of the wanted signal.

Parameters:

<state></state>	0 1 OFF	ON
	*RST:	1

Example:	BB:W3GP:TS25141:TCAS TC892 selects test case 8.9.2, CPCH Access Preamble and Collision Detection in Multipath Fading Case 3. BB:W3GP:TS25141:EMOD USER selects mode "User definable". Also settings that are not in com- pliance with the standard can be made. BB:W3GP:TS25141:WSIG:STAT OFF disables the generation of the wanted signal.
Manual operation:	See "Wanted Signal State - Receiver Tests" on page 289

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:TRIGger[:EXTernal]:DELay <Delay>

Sets an additional propagation delay besides the fixed DL-UL timing offset of 1024 chip periods.

The additional propagation delay is obtained by charging the start trigger impulse with the respective delay.

Parameters: <delay></delay>	float Range: *RST:	0 chips to 65535 chips 0 chips
Example:	selects the BB:W3GP:1	TS25141:TCAS TC642 settings for test case 6.4.2, Power Control Steps. TS25141:WSIG:TRIG:EXT:DEL 14 ional propagation delay of 14 chips.
Manual operation:	See "Propa	gation Delay - Test Case 6.4.2" on page 342

Annex A Reference

Supported channel types

Index	Shortform	Name	Function	Optional Enhanced in BS1
0	P-CPICH	Primary Common Pilot Channel	 Specifies the scrambling code in the scrambling code group (2nd stage of scrambling code detection) Phase reference for additional downlink channels Reference for the signal strength 	no
1	S-CPICH	Secondary Common Pilot Channel		no
2	P-SCH	Primary Sync Channel	Slot synchronization	no
3	S-SCH	Secondary Sync Channel	 Frame synchronization Specifies the scrambling code group 	no
4	P-CCPCH	Primary Common Control Phys. Channel	 Transfers the system frame number (SFN) Timing reference for additional downlink channels Contains the BCH transport chan- nel 	yes
5	S-CCPCH	Secondary Common Control Phys. Channel		no
6	PICH	Page Indication Channel	Transfers the paging indicator	no
7	AICH	Acquisition Indication Channel		no
8	AP-AICH	Access Preamble Acquisition Indi- cation Channel		no
9 / 10	PDSCH	Phys. Downlink Shared Channel		no
	DL-DPCCH	Dedicated Physical Control Chan- nel	-	
	HS-SCCH	High Speed Shared Control Chan- nel		
	E-AGCH	E-DCH Absolute Grant Channel		
	E-RGCH	E-DCH Relative Grant Channel		
	E-HICH	E-DCH Hybrid ARQ Indicator Channel		
11 - 13	DPCH	Dedicated Phys. Channel	Transfers the user data and the control information	yes

Index	Shortform	Name	Function	Optional Enhanced in BS1
	HS-SCCH	High Speed Shared Control Chan- nel		no
	HS-PDSCH (QPSK)	High Speed Physical Downlink Shared Channel (QPSK)		no
	HS-PDSCH (16 QAM)	High Speed Physical Downlink Shared Channel (16 QAM)		no
	HS-PDSCH (64 QAM)	High Speed Physical Downlink Shared Channel (64 QAM)		no
	HS-PDSCH (MIMO)	High Speed Physical Downlink Shared Channel (MIMO)		no
	E-AGCH	E-DCH Absolute Grant Channel		no
	E-RGCH	E-DCH Relative Grant Channel		no
	E-HICH	E-DCH Hybrid ARQ Indicator Channel		no
	F-DPCH	Fractional Dedicated Phys. Chan- nel		no
14 - 138	DPCH	Dedicated Phys. Channel	Transfers the user data and the control information	no
	HS-SCCH	High Speed Shared Control Chan- nel		
	HS-PDSCH (QPSK)	High Speed Physical Downlink Shared Channel (QPSK)		
	HS-PDSCH (16 QAM)	High Speed Physical Downlink Shared Channel (16 QAM)		
	HS-PDSCH (64 QAM)	High Speed Physical Downlink Shared Channel (64 QAM)		
	HS-PDSCH (MIMO)	High Speed Physical Downlink Shared Channel (MIMO)		
	E-AGCH	E-DCH Absolute Grant Channel		
	E-RGCH	E-DCH Relative Grant Channel		
	E-HICH	E-DCH Hybrid ARQ Indicator Channel		
	F-DPCH	Fractional Dedicated Phys. Chan- nel		

Channel tables of the DPDCH and E-DPDCH

Table A-2: Structure of the DPDCH channel table in conjunction with the overall symbol rate

Overall Symbol Rate	DPDCH 1	DPDCH 2	DPDCH 3	DPDCH 4	DPDCH 5	DPDCH 6
I or Q branch	1	Q	1	Q	1	Q
15 ksps	State: ON S-Rate: 15k Ch. Code: 64	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
30 ksps	State: ON S-Rate: 30k Ch. Code: 32	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
60 ksps	State: ON S-Rate: 60k Ch. Code: 16	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
120 ksps	State: ON S-Rate: 120k Ch. Code: 8	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
240 ksps	State: ON S-Rate: 240k Ch. Code: 4	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
480 ksps	State: ON S-Rate: 480k Ch. Code: 2	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
960 ksps	State: ON S-Rate: 960k Ch. Code: 1	State: OFF	State: OFF	State: OFF	State: OFF	State: OFF
2 x 960 ksps	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 1	State: OFF	State: OFF	State: OFF	State: OFF
3 x 960 ksps	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 3	State: OFF	State: OFF	State: OFF

Overall Symbol Rate	DPDCH 1	DPDCH 2	DPDCH 3	DPDCH 4	DPDCH 5	DPDCH 6
4 x 960 ksps	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 3	State: ON S-Rate: 960k Ch. Code: 3	State: OFF	State: OFF
5 x 960 ksps	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 3	State: ON S-Rate: 960k Ch. Code: 3	State: ON S-Rate: 960k Ch. Code: 2	State: OFF
6 x 960 ksps	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 1	State: ON S-Rate: 960k Ch. Code: 3	State: ON S-Rate: 960k Ch. Code: 3	State: ON S-Rate: 960k Ch. Code: 2	State: ON S-Rate: 960k Ch. Code: 2

Table A-3: Structure of the E-DPDCH channel table in conjunction with the overall symbol rate and no DPDCH active

Overall Symbol Rate	E-DPDCH 1	E-DPDCH 2	E-DPDCH 3	E-DPDCH 4
I or Q branch	I	Q	I	Q
15 Ksps	State: ON S-Rate: 15 k Ch. Code: 64	State: OFF	State: OFF	State: OFF
30 ksps	State: ON S-Rate: 30 k Ch. Code: 32	State: OFF	State: OFF	State: OFF
60 ksps	State: ON S-Rate: 60 k Ch. Code: 16	State: OFF	State: OFF	State: OFF
120 ksps	State: ON S-Rate: 120 k Ch. Code: 8	State: OFF	State: OFF	State: OFF
240 ksps	State: ON S-Rate: 240 k Ch. Code: 4	State: OFF	State: OFF	State: OFF
480 ksps	State: ON S-Rate: 480 k Ch. Code: 2	State: OFF	State: OFF	State: OFF
960 ksps	State: ON S-Rate: 960 k Ch. Code: 1	State: OFF	State: OFF	State: OFF

Overall Symbol Rate	E-DPDCH 1	E-DPDCH 2	E-DPDCH 3	E-DPDCH 4
I or Q branch	1	Q	I	Q
2 x 960 ksps	State: ON S-Rate: 960 k Ch. Code: 1	State: ON S-Rate: 960 k Ch. Code: 1	State: OFF	State: OFF
2 x1920 ksps	State: ON S-Rate: 1920 k Ch. Code: 1	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF	State: OFF
2 x 960 ksps + 2 x 1920 ksps	State: ON S-Rate: 1920 k Ch. Code: 1	State: ON S-Rate: 1920 k Ch. Code: 1	State: ON S-Rate: 960 k Ch. Code: 1	State: ON S-Rate: 960 k Ch. Code: 1
2 x 960 ksps, I only	State: ON S-Rate: 960 k Ch. Code: 1	State: OFF	State: OFF	State: OFF
2 x 960 ksps, Q only	State: OFF	State: ON S-Rate: 960 k Ch. Code: 1	State: OFF	State: OFF
2 x 1920 ksps, I only	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF	State: OFF	State: OFF
2 x 1920 ksps, Q only	State: OFF	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF	State: OFF
2 x 960 ksps + 2 x 1920 ksps, I only	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF	State: ON S-Rate: 960 k Ch. Code: 1	State: OFF
2 x 960 ksps + 2 x 1920 ksps, Q only	State: OFF	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF	State: ON S-Rate: 960 k Ch. Code: 1

Overall Symbol Rate	E-DPDCH 1	E-DPDCH 2	E-DPDCH 3	E-DPDCH 4
Active HS- DPCCH? I or Q branch	No Q	No I	Yes I	Yes Q
15 ksps	State: ON S-Rate: 15 k Ch. Code: 128	State: OFF	State: ON S-Rate: 15 k Ch. Code: 128	State: OFF
30 ksps	State: ON S-Rate: 30 k Ch. Code: 64	State: OFF	State: ON S-Rate: 30 k Ch. Code: 64	State: OFF
60 ksps	State: ON S-Rate: 60 k Ch. Code: 32	State: OFF	State: ON S-Rate: 60 k Ch. Code: 32	State: OFF
120 ksps	State: ON S-Rate: 120 k Ch. Code: 16	State: OFF	State: ON S-Rate: 120 k Ch. Code: 16	State: OFF
240 ksps	State: ON S-Rate: 240 k Ch. Code: 8	State: OFF	State: ON S-Rate: 240 k Ch. Code: 8	State: OFF
480 ksps	State: ON S-Rate: 480 k Ch. Code: 4	State: OFF	State: ON S-Rate: 480 k Ch. Code: 4	State: OFF
960 ksps	State: ON S-Rate: 960 k Ch. Code: 2	State: OFF	State: ON S-Rate: 960 k Ch. Code: 2	State: OFF
2 x 960 ksps	State: ON S-Rate: 960 k Ch. Code: 2			
2 x1920 ksps	State: ON S-Rate: 1920 k Ch. Code: 1			
2 x 960 ksps, I only	State: OFF	State: ON S-Rate: 960 k Ch. Code: 2	State: ON S-Rate: 960 k Ch. Code: 2	State: OFF
2 x 960 ksps, Q only	State: ON S-Rate: 960 k Ch. Code: 2	State: OFF	State: OFF	State: ON S-Rate: 960 k Ch. Code: 2

Table A-4: Structure of the E-DPDCH channel table in conjunction with the overall symbol rate and one DPDCH active

Overall Symbol Rate	E-DPDCH 1	E-DPDCH 2	E-DPDCH 3	E-DPDCH 4
Active HS- DPCCH? I or Q branch	No Q	No I	Yes I	Yes Q
2 x 1920 ksps, l only	State: OFF	State: ON S-Rate: 1920 k Ch. Code: 1	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF
2 x 1920 ksps, Q only	State: ON S-Rate: 1920 k Ch. Code: 1	State: OFF	State: OFF	State: ON S-Rate: 1920 k Ch. Code: 1

List of Commands

[:SOURce]:BB:W3GPp:GPP3:VERSion?	
[:SOURce]:BB:W3GPp:TS25141:AWGN:CNRatio	547
[:SOURce]:BB:W3GPp:TS25141:AWGN:ENRatio	
[:SOURce]:BB:W3GPp:TS25141:AWGN:POWer:NOISe	
[:SOURce]:BB:W3GPp:TS25141:AWGN:RBLock:RATE	
[:SOURce]:BB:W3GPp:TS25141:AWGN:RPDetection:RATE	548
[:SOURce]:BB:W3GPp:TS25141:AWGN:STATe	
[:SOURce]:BB:W3GPp:TS25141:BSPClass	549
[:SOURce]:BB:W3GPp:TS25141:BSSignal:FREQuency	
[:SOURce]:BB:W3GPp:TS25141:BSSignal:POWer	
[:SOURce]:BB:W3GPp:TS25141:EMODe	
[:SOURce]:BB:W3GPp:TS25141:FSIMulator:STATe	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:BWIDth	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CNRatio	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:FOFFset	551
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:POWer	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:CW:STATe	552
[:SOURce]:BB:W3GPp:TS25141:IFSignal:FOFFset	552
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:FOFFset	553
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:POWer	553
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:STATe	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:MODulated:TYPE	
[:SOURce]:BB:W3GPp:TS25141:IFSignal:POWer	555
[:SOURce]:BB:W3GPp:TS25141:IFSignal:SETTing:TMODel:BSTation	555
[:SOURce]:BB:W3GPp:TS25141:IFSignal:STATe	555
[:SOURce]:BB:W3GPp:TS25141:IFSignal:TYPE	
[:SOURce]:BB:W3GPp:TS25141:ROUTe	
[:SOURce]:BB:W3GPp:TS25141:RXDiversity	
[:SOURce]:BB:W3GPp:TS25141:SCODe	
[:SOURce]:BB:W3GPp:TS25141:SCODe:MODE	
[:SOURce]:BB:W3GPp:TS25141:TCASe	
[:SOURce]:BB:W3GPp:TS25141:TCASe:EXECute	
[:SOURce]:BB:W3GPp:TS25141:TRIGger	
[:SOURce]:BB:W3GPp:TS25141:TRIGger:OUTPut	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:BTYPe	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DCRatio	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:SFORmat	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:DSELect	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:RDATa:PATTern	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:DSELect	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PDSTeps	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPCCh:TPC:SDATa:PUSTeps	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:CCODing:TYPE	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BIT:RATE	
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:DERRor:BLOCk:RATE	

[:SOURce]:BB:W3GPp:TS25141:WSIGnal:DPDCh:ORATe	. 563
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:FREQuency	564
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:OBANd	. 564
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PCPCh:CCODing:TYPE	564
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:POWer	565
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:PRACh:CCODing:TYPE	565
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:STATe	. 565
[:SOURce]:BB:W3GPp:TS25141:WSIGnal:TRIGger[:EXTernal]:DELay	566
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing:USER:CATalog?</hw>	.432
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel:DPCH:CCODing:USER:DELete</hw>	.428
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:BPFRame?</ch0></hw>	. 428
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SFORmat</ch0></hw>	.429
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:SRATe?</ch0></hw>	. 429
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:STATe</ch0></hw>	430
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:TYPE</ch0></hw>	. 430
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:USER:LOAD</ch0></hw>	.432
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:CCODing:USER:STORe</ch0></hw>	432
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:LAYer</ch0></hw>	. 443
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:RATE</ch0></hw>	443
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BIT:STATe</ch0></hw>	.444
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:RATE</ch0></hw>	444
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DERRor:BLOCk:STATe</ch0></hw>	.445
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:CONNector</ch0></hw>	.440
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:DIRection</ch0></hw>	440
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:MODE</ch0></hw>	441
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:RANGe:DOWN</ch0></hw>	441
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STATe</ch0></hw>	. 441
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STEP:MANual</ch0></hw>	. 442
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl:STEP[:EXTernal]</ch0></hw>	. 442
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:DPControl[:POWer]?</ch0></hw>	442
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:INTerleaver2</ch0></hw>	. 433
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:STATe</ch0></hw>	.426
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:CRCSize</di0></ch0></hw>	. 433
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:DATA</di0></ch0></hw>	. 434
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:DATA:</di0></ch0></hw>	
DSELect	. 434
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:DATA:</di0></ch0></hw>	
PATTern	. 435
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:DTX</di0></ch0></hw>	435
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:EPRotection</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:INTerleaver</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:RMATtribute</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:STATe</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:TBCount</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:TBSize</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:CHANnel<ch0>:DPCH:TCHannel<di0>:TTINterval</di0></ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:INTerleaver<di></di></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:CCODing:TYPE?</hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:ENHanced:PCCPch:STATe</hw>	

[:SOURce <hw>]:BB:W3GPp:BSTation:OCNS:MODE</hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:OCNS:SEED</hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:OCNS:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation:PRESet</hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:LAY</ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:RA</ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BIT:STA</ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:</ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation[:ENHanced]:CHANnel<ch0>:HSDPa:DERRor:BLOCk:</ch0></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel:HSDPa:HSET:PRESet</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel:PRESet</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:ASLOt</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:AICH:SAPattern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:ASLOt</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:APAIch:SAPattern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:CCODe</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:DCFL act</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:DSELect</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DATA:PATTern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:MCODe</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:PLENgth</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:PILot</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TFCI</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:POFFset:TPC</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TFCI:STATe</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:DSELect</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:DATA:PATTern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:MISuse</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:PSTep</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:DPCCh:TPC:READ</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:DSEL</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:DATA:PATT</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:MISuse</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:PSTep</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:FDPCh:DPCCh:TPC:READ</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:BMODe[:STATe]</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:CVPB</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:ACLength</ch0></st></hw>	393
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:ALTModulation</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:AMODe</ch0></st></hw>	393
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:BCBTti<di>?</di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:BPAYload<di>?</di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:CLENgth</ch0></st></hw>	395
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:CRATe<di>?</di></ch0></st></hw>	395
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA:DSELect</ch0></st></hw>	396
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:DATA:PATTern</ch0></st></hw>	

[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ:LENGth</ch0></st></hw>	397
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HARQ:MODE</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:HSCCode</ch0></st></hw>	398
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:MODulation<di></di></ch0></st></hw>	398
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:NAIBitrate?</ch0></st></hw>	
: [:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PREDefined</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:PWPattern</ch0></st></hw>	400
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVParameter<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVPSequence<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:RVSTate</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:S64Qam</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SCCode</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SEED</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SLENgth:ADJust</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SLENgth?</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:SPATtern<di>?</di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:STAPattern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:INDex<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:REFerence</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TBS:TABLe<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TPOWer</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:TYPE</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UECategory?</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:UEID</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:HSET:VIBSize<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:CVPB<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:MODulation<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:PWPattern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MIMO:STAPattern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:MODE</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:HSDPa:TTIDistance</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:POWer</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SFORmat</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:SRATe</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:STATe</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TOFFset</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>:TYPE</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:IFCoding</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTI<di0>:AGSCope</di0></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTI<di0>:AGVIndex</di0></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTI<di0>:UEID</di0></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTICount</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EAGCh:TTIEdch</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:CTYPe</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:DTAU</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:ETAU?</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:RGPAttern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:SSINdex</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:EHICh:TTIEdch</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:CTYPe</ch0></st></hw>	417

[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:DTAU</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:ETAU?</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:RGPAttern</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:SSINdex</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CHANnel<ch0>[:HSUPa]:ERGCh:TTIEdch</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:DLFStructure</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:METHod</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGD</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGL<di></di></ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGPL</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:PATTern<ch>:TGSN</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:CMODe:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:DCONflict:RESolve</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:DCONflict[:STATe]?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:ENHanced:CHANnel<ch0>:DPCH:DPControl:RANGe:UP</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:ENHanced:PCPich:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:OLTDiversity</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:PINDicator:COUNt</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:SCODe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:SCODe:STATe</st></hw>	424
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:SCPich:PREFerence[:STATe]</st></hw>	424
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:SSCG?</st></hw>	424
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:STATe</st></hw>	425
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:TDELay</st></hw>	425
[:SOURce <hw>]:BB:W3GPp:BSTation<st>:TDIVersity</st></hw>	425
[:SOURce <hw>]:BB:W3GPp:BSTation<st> MSTation<st>:CMODe:POFFset</st></st></hw>	421
[:SOURce <hw>]:BB:W3GPp:BSTation<st> MSTation<st>:CMODe:POMode</st></st></hw>	421
[:SOURce <hw>]:BB:W3GPp:CLIPping:LEVel</hw>	358
[:SOURce <hw>]:BB:W3GPp:CLIPping:MODE</hw>	359
[:SOURce <hw>]:BB:W3GPp:CLIPping:STATe</hw>	359
[:SOURce <hw>]:BB:W3GPp:CLOCk:MODE</hw>	372
[:SOURce <hw>]:BB:W3GPp:CLOCk:MULTiplier</hw>	372
[:SOURce <hw>]:BB:W3GPp:CLOCk:SOURce</hw>	373
[:SOURce <hw>]:BB:W3GPp:COPY:COFFset</hw>	355
[:SOURce <hw>]:BB:W3GPp:COPY:DESTination</hw>	356
[:SOURce <hw>]:BB:W3GPp:COPY:EXECute</hw>	356
[:SOURce <hw>]:BB:W3GPp:COPY:SOURce</hw>	357
[:SOURce <hw>]:BB:W3GPp:CRATe:VARiation</hw>	360
[:SOURce <hw>]:BB:W3GPp:CRATe?</hw>	359
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:APCO25</hw>	360
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:COSine</hw>	360
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:GAUSs</hw>	361
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:LPASs</hw>	361
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:LPASSEVM</hw>	361
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:RCOSine</hw>	361
[:SOURce <hw>]:BB:W3GPp:FILTer:PARameter:SPHase</hw>	362
[:SOURce <hw>]:BB:W3GPp:FILTer:TYPE</hw>	362
[:SOURce <hw>]:BB:W3GPp:LINK</hw>	357
[:SOURce <hw>]:BB:W3GPp:LREFerence</hw>	452
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:COUNt</hw>	447

[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:POWer:OFFSet</hw>	448
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:SCODe:STEP</hw>	448
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation:ADDitional:TDELay:STEP</hw>	449
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:BPFRame?</hw>	533
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:TYPE</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:CATalog?</hw>	535
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:DELete</hw>	536
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:LOAD</hw>	536
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:CCODing:USER:STORe</hw>	536
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:LAYer</hw>	537
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:RATE</hw>	537
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BIT:STATe</hw>	538
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor:BLOCk:RATE</hw>	538
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:DERRor[:BLOCk]:STATe</hw>	538
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:INTerleaver2</hw>	539
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:ORATe</hw>	539
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:STATe</hw>	539
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:CRCSize</di0></hw>	541
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA</di0></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA:DSELect</di0></hw>	542
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:DATA:PATTern</di0></hw>	543
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:EPRotection</di0></hw>	543
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:INTerleaver</di0></hw>	543
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:RMATtribute</di0></hw>	540
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:STATe</di0></hw>	540
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TBCount</di0></hw>	540
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TBSize</di0></hw>	541
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:DPDCh:TCHannel<di0>:TTINterval</di0></hw>	541
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:STATe</hw>	544
[:SOURce <hw>]:BB:W3GPp:MSTation:ENHanced:PCPCh:CCODing:TYPE</hw>	544
[:SOURce <hw>]:BB:W3GPp:MSTation:PRESet</hw>	449
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:BURSt<ch></ch></hw>	526
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:CYCLe<ch></ch></hw>	526
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:ITHReshold</hw>	525
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:LPLength</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:MODE</hw>	524
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:OFFSet</hw>	525
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:POSTamble<ch>?</ch></hw>	527
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:PREamble<ch>?</ch></hw>	526
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:STATe</hw>	524
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:TTIEdch</hw>	524
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:USCH:CATalog?</hw>	527
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:USCH:DELete</hw>	527
[:SOURce <hw>]:BB:W3GPp:MSTation:UDTX:USCH:FSELect</hw>	528
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:AOUE</hw>	532
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:ASSignment</hw>	529
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:CONNector</hw>	530
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:DIRection</hw>	529

[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:MODE</hw>	530
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:RANGe:DOWN</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:RANGe:UP</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STEP:MANual</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl:STEP[:EXTernal]</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation[:ENHanced:DPDCh]:DPControl[:POWer]?</hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:CCODe?</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DPDCh:DATA</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DFDCh:DATA:DSELect</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DFDCh:DATA:PATTern</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CHANnel<ch>:DFDCh:SRATe?</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:METHod</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODE:METHOU</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGL<di></di></ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGPL</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:PATTern<ch>:TGSN</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:CMODe:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:CCODe?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:MODE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:FBI:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CCODe?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:COMPatibility</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI:PLENgth</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:CQI<ch>[:VALues]</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:REPeat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HACK:ROWS</st></hw>	473
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:HAPattern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POAAck</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POANack</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:POCA</st></hw>	468
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONAck</st></hw>	467
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:PONNack</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQI<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:CQIType</ch0></st></hw>	469
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:HACK</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTI<ch0>:PCI</ch0></st></hw>	469
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO:TTICount</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MIMO[:MODE]</st></hw>	465
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:MMODe</st></hw>	472
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:REPeat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PCQI:ROWS</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POACk</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:PONAck</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:POWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:FROM</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK:TO</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:HACK<di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:FROM</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI:TO</ch0></st></hw>	

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:CQI<us></us></di></ch0></st></hw>	477
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:PCQI<di>:PCI</di></di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:PCQI<di>:TYPE</di></ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POHAck</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:ROW<ch0>:POPCqi</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ACTive</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SC:ENABled</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SDELay</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SFORmat?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth:ADJust</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:SLENgth?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:HS:TTIDistance</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:POWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:SFORmat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TFCI:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TOFFset</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:DATA:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MISuse</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:MODE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:PSTep</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPCCh:TPC:READ</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:FCIO</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:ORATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:POWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:DPDCh:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:ENHanced:PRACh:CCODing:TYPE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:MODE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:CPSFormat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DATA:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:DPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:MODE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:FBI:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:MLENgth</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PLENgth</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PPOWer:STEP</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:PREPetition</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:RAFTer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:RARB</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:SIGNature</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:SRATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TFCI</st></hw>	

[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:MPARt?</st></hw>	489
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:DPOWer:PREamble?</st></hw>	490
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SOFFset</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:SPERiod?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREMp</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TIMing:TIME:PREPre</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:DATA:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PCPCh:TPC:READ</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:ATTiming</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:CPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DATA:PATTern</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:DPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:MLENgth</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:PPOWer:STEP</st></hw>	
[:SOURcehw>]:BB:W3GPp:MSTation <st>:PRACh:PREPetition</st>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:RAFTer</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:RARB</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:SFORmat</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:SIGNature</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:SRATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TFCI</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt:CONTrol?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt:DATA?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:MPARt?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:DPOWer:PREamble?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SOFFset</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:SPERiod?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREMp</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:PRACh:TIMing:TIME:PREPre</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:SCODe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:SCODe::MODE</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:STATe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>:TDELay</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:CCODe?</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA:DSELect</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:DATA:PATTern</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:POWer</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:CHANnel<ch>:DPDCh:E:SRATe?</ch></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:CCODe?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CHANnel</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:CRATe?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:DSELect</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DATA:PATTern</st></hw>	509

[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:LAYer</st></hw>	509
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:RATE</st></hw>	509
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BIT:STATe</st></hw>	509
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BLOCk:RATE</st></hw>	510
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DERRor:BLOCk:STATe</st></hw>	510
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:PATTern</st></hw>	510
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:DTX:STATe</st></hw>	511
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:ADEFinition</st></hw>	511
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:CONNector</st></hw>	511
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:DELay:AUSer</st></hw>	512
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:DELay:</st></hw>	
FEEDback?	512
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:MODE</st></hw>	512
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:</st></hw>	
MRETransmissions	513
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation:RVZero</st></hw>	513
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ:SIMulation[:STATe]</st></hw>	514
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HARQ[:SIMulation]:PATTern<ch></ch></st></hw>	514
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:HPROcesses?</st></hw>	514
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MIBRate?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:MODulation</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:ORATe</st></hw>	515
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:PAYBits?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:STATe</st></hw>	516
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:INDex</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TBS:TABLe</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIBits?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:TTIEdch</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:FRC:UECategory?</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:HBIT</st></hw>	518
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:POWer</st></hw>	519
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:RSNumber</st></hw>	519
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:STATe</st></hw>	519
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPCCh:E:TFCI</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:FCIO</st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:MODulation</st></hw>	520
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:ORATe</st></hw>	520
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:STATe</st></hw>	521
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:DPDCh:E:TTIEdch</st></hw>	521
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:REPeat</st></hw>	522
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:FROM</ch0></st></hw>	522
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROW<ch0>:TO</ch0></st></hw>	
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:ROWCount</st></hw>	522
[:SOURce <hw>]:BB:W3GPp:MSTation<st>[:HSUPa]:EDCH:TTIEdch</st></hw>	521
[:SOURce <hw>]:BB:W3GPp:POWer:ADJust</hw>	357
[:SOURce <hw>]:BB:W3GPp:POWer[:TOTal]?</hw>	358
[:SOURce <hw>]:BB:W3GPp:PPARameter:CRESt</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:DPCH:COUNt</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:DPCH:SRATe</hw>	
:SOURce <hw>]:BB:W3GPp:PPARameter:EXECute</hw>	

[:SOURce <hw>]:BB:W3GPp:PPARameter:SCCPch:SRATe</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:SCCPch:STATe</hw>	
[:SOURce <hw>]:BB:W3GPp:PPARameter:SCHannels</hw>	376
[:SOURce <hw>]:BB:W3GPp:PRESet</hw>	352
[:SOURce <hw>]:BB:W3GPp:SETTing:CATalog?</hw>	353
[:SOURce <hw>]:BB:W3GPp:SETTing:DELete</hw>	353
[:SOURce <hw>]:BB:W3GPp:SETTing:LOAD</hw>	353
[:SOURce <hw>]:BB:W3GPp:SETTing:STORe</hw>	
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:BSTation</hw>	376
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:BSTation:CATalog?</hw>	377
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:MSTation</hw>	377
[:SOURce <hw>]:BB:W3GPp:SETTing:TMODel:MSTation:CATalog?</hw>	
[:SOURce <hw>]:BB:W3GPp:SLENgth</hw>	
[:SOURce <hw>]:BB:W3GPp:STATe</hw>	354
[:SOURce <hw>]:BB:W3GPp:TRIGger:ARM:EXECute</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:EXECute</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:EXTernal:SYNChronize:OUTPut</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OBASeband:DELay</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OBASeband:INHibit</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut:DELay:FIXed</hw>	369
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay</ch></hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MAXimum?</ch></hw>	370
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:DELay:MINimum?</ch></hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:MODE</ch></hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:OFFTime</ch></hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:ONTime</ch></hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:OUTPut<ch>:PERiod</ch></hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:RMODe?</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:SLENgth</hw>	365
[:SOURce <hw>]:BB:W3GPp:TRIGger:SLUNit</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger:SOURce</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger[:EXTernal]:DELay</hw>	
[:SOURce <hw>]:BB:W3GPp:TRIGger[:EXTernal]:INHibit</hw>	
[:SOURce <hw>]:BB:W3GPp:WAVeform:CREate</hw>	
[:SOURce <hw>]:BB:W3GPp[:TRIGger]:SEQuence</hw>	368

Index

Symbols

(Mis-) use TPC for output power control	
DPCCH	. 145, 180, 387, 458
F-DPCH	391
2nd Search Code Group	
3GPP Version	56, 355
3i OCNS mode	
4C-HSDPA Mode	
4C-HSPDA	
Reference Measurement Channel	
8C-HSDPA Mode	193, 194

Α

Absolute Grant Scope		148
Absolute Grant Value Index		148
Accept		
Multi channel assistant		158
Predefined Settings		
Accept copy		356
Access Slot		
ACK Definition (HARQ)		140
HSUPA FRC	210	511
ACK Pattern	210,	511
AICH/AP-AICH		140
AP-AICH		
HSUPA		
Add OCNS		
Additional UE		. 78
Additional User Delay		
HSUPA FRC	219,	512
Adjust		
HSDPA		106
Adjust ARB Sequence Length		
HS-DPCCH	199,	201
Adjust total power to 0 dB		. 70
Adjust Total Power to 0 dB		357
Advanced Mode		
HSDPA	105	393
AICH Settings		
AICH Transmission Timing		100
PCPCH	251	101
PRACH		
Alternate HS-PDSCH Modulation		
Alternate Number of HS-PDSCH Channelization Co		
	ues	120
Always Use Redundancy Version 0 (HARQ)	040	-40
HSUPA FRC		
AP-AICH Settings		
Application cards		
Application notes		15
Apply		286
ARB Sequence Length		
PCPCH		252
PRACH		241
Repeat structure after	241,	252
ARB Settings		56
Arm Trigger		
Armed_Auto		
Armed_Retrigger		
Assignment Mode for UL-DTX		
At Slot		
Auto		
Auto	. 50,	000

AWGN C/N		328,	335
AWGN E/N			316
AWGN Power Le	vel 294, 315,	328,	334
AWGN State		315,	328

В

Base station default values		355
Base station identification		80
Baseband A Signal Routing		
Baseband C/D		
Disabled realtime functions		53
Baseband filter		259
Binary Channel Bits per TTI		
Binary Channel Bits/TTI (Nbin)		
HSUPA FRC		. 517
Bit Error Rate		
Enhanced DPCHs		. 132
Enhanced DPDCH UE1		. 235
HSDPA H-Set		118
HSUPA FRC		219
Bit Error State		.219
Enhanced DPCHs	132,	444
Enhanced DPDCH		. 538
Enhanced DPDCH UE1		. 235
HSDPA H-Set	117,	446
HSUPA FRC		509
Bits per Frame		
DPDCH	128, 231,	533
Block Error Rate	313,	325
Enhanced DPCHs		. 133
Enhanced DPDCH UE1		. 236
HSDPA H-Set		
HSUPA FRC		220
Block Error State		
Enhanced DPCHs		
Enhanced DPDCH		. 538
Enhanced DPDCH UE1		
HSDPA H-Set		
HSUPA FRC	220,	510
Blocking Scenario		300
Brochures		15
BS frequency		
BS power		
Burst Mode	,	
HSDPA		392
BxT		

С

Channel Coding	
UE1	
Channel Coding State	
Enhanced P-CCPCH	438
UE1	534
Channel Coding Type	
Enhanced P-CCPCH	123
P-CCPCH	438
Channel Graph	89
Channel Number	
DPDCH	183
E-DPDCH	222
Channel P-CCPCH	121

Multi channel assistant		
Channel Power		
	,	
HS-DPCCH		461
Channel state Multi channel assistant		150
Channel State		
BS		
Channel table		412
DPCCH		174
DPDCH		
E-DCH		
E-DPDCH		
Channel Table		
E-DPDCH	222, 570,	572
Channel type		
Multi channel assistant		156
Channel Type		85
DPDCH		
E-DPDCH		223
Channelization code		
Multi channel assistant		
Channelization Code		
DPCCH		
DPDCH		
E-DPCCH E-DPDCH		
HS-DPCCH		
Channelization code HS-SCCH (SF128)		
Channelization Code Offset		
Channelization code step		
Multi channel assistant		156
Chip Clock Multiplier		
Chip Rate		
Chip Rate Variation		
Clipping Level		
Clipping Mode		358
	262, 263,	358 359
Clipping Mode Clipping Settings Clock Mode	262, 263,	358 359 56 65
Clipping Mode Clipping Settings Clock Mode Clock Source	262, 263,	358 359 56 65 65
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict	262, 263,	358 359 56 65 65
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph	262, 263, 	358 359 56 65 65 162
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE		358 359 56 65 65 162 162
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display		358 359 56 65 162 162 162
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes		358 359 56 65 162 162 162 90
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate		358 359 56 65 162 162 162 90
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin)		358 359 56 65 162 162 162 90 395
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC		358 359 56 65 162 162 162 90 395
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin)		358 359 56 65 162 162 90 395 214
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC		358 359 56 65 162 162 90 395 214
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin)		358 359 56 65 162 162 162 90 395 214 507
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH		358 359 56 65 162 162 90 395 214 507
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type		358 359 56 65 162 162 162 90 395 214 507 544 430
Clipping Mode Clipping Settings Clock Mode Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH		358 359 56 65 162 162 162 90 395 214 507 544 430
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type		358 359 56 65 162 162 162 90 395 214 507 544 544 430 230
Clipping Mode Clipping Settings Clock Mode Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH UE1 PCPCH PRACH		358 359 65 162 162 162 90 395 214 507 544 430 230 544
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH UE1 PRACH Coding Type Enhanced		358 359 56 65 162 162 162 90 395 214 507 544 430 230 544 545
Clipping Mode Clipping Settings Clock Mode Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH		358 359 56 65 162 162 90 395 214 507 544 430 230 544 545 534
Clipping Mode Clipping Settings Clock Mode Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH UE1 PCPCH PRACH Coding Type Enhanced DPDCH Common trigger settings		358 359 56 65 162 162 162 90 395 214 507 544 430 230 544 545 534
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH Coding Type Enhanced DPDCH Common trigger settings Compatibility Mode		358 359 56 65 162 162 162 90 395 214 507 544 430 230 544 545 544 57
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH Coding Type Enhanced DPDCH Common trigger settings Compatibility Mode HS-DPCCH		358 359 56 65 162 162 162 90 395 214 507 544 430 230 544 545 544 57
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH UE1 PCPCH PRACH Coding Type Enhanced DPDCH PPCH Composite CQI		358 359 56 65 162 162 90 395 214 507 544 4300 544 545 534 57 461
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Ninf/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH UE1 PCPCH PRACH Coding Type Enhanced DPDCH Common trigger settings Compatibility Mode HS-DPCCH		358 359 56 65 162 162 90 395 214 507 544 4300 544 545 534 57 461
Clipping Mode Clipping Settings Clock Mode Clock Source Code Domain Conflict Code Domain Graph UE Code Domain ideal display Code tree of channelization codes Coding Rate Coding Rate (Ninf/Nbin) HSUPA FRC Coding Rate (Nint/Nbin) HSUPA FRC Coding State PCPCH PRACH Coding Type Enhanced DPDCH UE1 PCPCH PRACH Coding Type Enhanced DPDCH PPCH Composite CQI	262, 263, 	358 359 56 65 162 162 90 395 214 507 544 430 230 544 430 230 544 545 534 57 461

Constellation Version Parameter b 101, 102, 4 Control Power	08
PCPCH	~~
PRACH	94
Conventions	
SCPI commands3	51
Convolution Coder	
BS11	31
UE1	
Convolution Coder - BS1 4	35
Сору	
Base Station	56
from Source	68
User Equipment 68, 3	56
Copy from Source	
Copying the data of a base or user equipment 3	
Coupled trigger settings	
CQI	0.
HS-DPCCH 199, 2	90
CQI Length	00
HS-DPCCH	02
CQI Type	
HS-DPCCH	
,	00
CQI Values	~~
HS-DPCCH	02
CQI1	~ ~
HS-DPCCH	06
CQI2	
HS-DPCCH 199, 2	06
CQIs	
HS-DPCCH199, 2	
Crest factor	
Clipping3	58
Crest factor - timing offset	87
Crest factor – Clipping	61
Current ARB Sequence Length 106, 4	78
HS-DPCCH	99
Current Range without Recalculation63, 3	
Cut Off Frequency Factor	
CW Frequency Offset	
CW Interferer Level	
CW Interferer State	
Juint interior otale	09
п	

D

Data	
BS	
Data Config	87
Data Power	
PCPCH	254, 485
PRACH	244, 496
Data rate matching	
BS1	130
UE1	
Data sheets	
Data source	
DPCCH	143, 178
DPDCH	
E-DPDCH	223
F-DPCCH	152
HSUPA FRC	
Multi channel assistant	157
PCPCH	256
PRACH	
Transport channel	129, 232

Data Source	
DPDCH	
E-DCH	507
E-DPDCH	504
HS-PDSCH	109
PCPCH	484
PRACH	495
Transport Channel	
DC-HSDPA Mode	
DCCH Dedicated Control Channel	125
DCCH On	
Enhanced DPCH	437
DCCH On Enhanced DPCH	
DCCH-Dedicated Control Channel	
Default settings	
All channels	
BS	
Channel tabel	
HSDPA H-Set	
Default Values User Equipment	67
Delay	
Marker	
Trigger	61
Delay Between HARQ And Feedback (HARQ)	
HSUPA FRC	218, 512
Direction	440
Dynamic Power Control	136, 169
Distance	
Diversity	
BS	
DL Frame Structure	
DL-UL Timing Offset	
DPCCH	176
Do Conf	
see Domain Conflict	80
Documentation overview	
Down Range	
Dynamic Power Control	170
Downlink	
DPCCH + DPDCH	,
DPCCH Burst Length	
DPCCH Settings	140
DTCH Dedicated Traffic Channel	125
DTCH On	
Enhanced DPCH	437
DTCH On Enhanced DPCH	129
DTCH-Dedicated Traffic Channel	228
DTX Cycle	
UL-DTX	167
DTX Indication Bits	435
BS1	
Dynamic Power Control	162, 169
DL	
Down Range	
Manual Step	
Power Step	
Step	
UE1	
Up Range	
Dynamic Power Control Direction 1	
BS1	
Dynamic Power Control Mode	
•	
	136, 169
Dynamic range	
Dynamic range Dynamic Power Control 1	

Е

E-AGCH Information Filed Coding	147
E-AGCH Settings	147
E-DCH TTI	
HSUPA FRC	
E-HICH Settings	
E-RGCH Settings	
Edit Mode	
Enhanced Channels Coding	430
Enhanced DPCHs	
Enhanced P-CPICH Pattern	
Enhanced Settings	
BS	
P-CCPCH	121
P-CPICH	
Error Protection	
BS1	
UE1	
Error Protection - BS1	
Execute Trigger	
External control signal	
Connector	136, 169
External Power Control	
BS1	
External Trigger Delay	61

F

F-DPCH Settings	
Fading State	317, 319, 331
FBI Mode	
DPCCH	
PCPCH	
FBI Pattern	
DPCCH	
PCPCH	
Filter Parameter	,
Filter Type Filtering Settings	
Filtering, Clipping, ARB Settings	
Fix marker delay to current range	
Fixed Marker Delay Maximum	
Fixed Reference Channel	
Fixed Reference Channel (FRC)	- ,
HSUPA	507
HSUPA FRC	
Force Channelization Code to I/0	
E-DPDCH	
Force Channelization Code to I/Q	
E-DPDCH	
FRC	
Frequency Offset	297, 301, 348

G

Gap Distance	
BS	
Gap Length	97
Generate Waveform	55
Getting started	14
-	

Н

H-Set		104
Happy Bit		
E-DPCCH	208.	518

HARQ feedback	
connectors	
HARQ Simulation Pattern	
HSUPA FRC	
HARQ-ACK	
HS-DPCCH	. 195, 206, 469
HARQ-ACK Pattern	
HS-DPCCH	202, 464
HSUPA FRC	217
Higher layer scheduling	
UE	452
HS-DPCCH Power	187
HS-PDSCH Modulation	112
HS-SCCH Type	106, 407
HSDPA H-Set settings	
HSDPA Mode	100, 103
BS	410
HSDPA Settings	
BS	
HSUPA FRC	208
HSUPA settings	147, 149

I

Inactivity Threshold	166
Information Bit Payload	114, 394
Information Bit Payload (Ninf)	
HSUPA FRC	
Insert Errors On	
Enhanced DPCHs	
Enhanced DPDCH	
Enhanced DPDCH UE1	
HSDPA H-Set	445
HSUPA FRC	220, 509
Installation	
Instrument security	
Inter TTI Distance	
HS-DPCCH	190
HSDPA	410
Interferer Bandwidth Type	
Interferer Frequency Offset	
Interferer Level	
Interferer Level / Wanted Signal Level	
Interferer Modulation	297, 301, 310
Interferer Signal State	297, 300, 348
Interleaver	
P-CCPCH	438
Interleaver P-CCPCH	

L

Layer	
Bit error insertion 132,	235
Layer - Bit error insertion	118
Level reference	
see Power reference	70
Link Direction 56,	357
Long Preamble Length	167
Long Scrambling Code	161
UE	451

Μ

Manual Trigger	363
Marker Configuration	
Marker Delay	63

Maximum Information Bitrate/kbps		
HSUPA FRC		10
Maximum Number Of Retransmissions (H/		
HSUPA FRC	218, 5	13
Measured external clock		65
Message Length		
PCPCH	255, 4	86
PRACH	244, 4	96
Method for compressed mode		95
BS		19
UE	4	52
MIMO		81
BS		25
MIMO Mode		
HS-DPCCH 1	193, 203, 465, 4	72
Rel 8		
Mod Frequency Offset		
Mod Interferer Level		10
Mod Interferer State		09
Mode		
Dynamic Power Control		69
HARQ Simulation		
UE		
Mode (HARQ Simulation)		16
Mode (HARQ)		
HSUPA FRC	217 5	12
Modulation		. –
BS	102 398 4	09
E-DPDCH	, ,	
HSUPA FRC		
Modulation data		
BS	87.3	82
Multi Channel Assistant		
Multicode State		50
DPCCH	142 3	83
Multiplier		
		00

Ν

Nominal Average Information Bitrate	106
Number of additional UE	78, 447
Number of configurable TTIs	
Number of DPCH	
Predefined Settings	77
Number of H-PDSCH Channel Codes	110, 395
Number of HARQ Processes	115
Number Of HARQ Processes	
HSUPA FRC	212, 514
Number of intervals	
HARQ-ACK	194
PCI / CQI	
Number of PI per Frame	80, 423
Number of TTI's	
HS-DPCCH	
Number of TTIs	
HS-DPCCH	
Nyquist filter	259

0

OCNS	
OCNS Mode	
Offset	
UL-DTX	
Online help	
Open Loop Transmit Diversity	
Operating Band	300

Overall Symbol Rate	
DPDCH	
E-DPDCH	221, 520
HSUPA FRC	
UE1	
Overall Symbol Rate DPDCH	342
Overall Symbol Rate RFC	
HSUPA FRC	

Ρ

Pattern			
BS		87,	382
Pattern Length			
BS			98
PCI			
HS-DPCCH	199,	206,	469
PCPCH only	160,	247,	449
PCPCH settings			247
Channel coding			257
Graphical display			249
Message part			
Preamble settings			
PCPCH structure			
Pilot Length			
DPCCH		139	142
S-CCPCH			
Postamble Length		155,	142
UL-DTX			160
			100
Power BS			00
DPCCH			
E-DPCCH			
E-DPDCH			
HS-DPCCH			
Multi channel assistant			
Power class			
Power Control			
BS1			135
Power Control Grap			530
Power Control Graph			
Ext. Power Control			170
Power Control Preamble Length			
PCPCH		253,	486
Power Down Steps			
Power DPCCH			
DPCCH			175
Power Level			
Power Offset		200,	011
Additional UE			70
BS			
Pilot DPCCH			
TFCI DPCCH			
TPC DPCCH			
UE Power Offset ACK			
HS-DPCCH			
Power Offset ACK/ACK			
HS-DPCCH			
Power Offset ACK/NACK			
HS-DPCCH			204
Power Offset CQI			
HS-DPCCH			
Power Offset CQI Type A			
HS-DPCCH			205
Power Offset HARQ-ACK			
HS-DPCCH			196

Power Offset Mode	
BS	, 421
UE96	, 421
Power Offset NACK	. 463
HS-DPCCH	202
Power Offset NACK/ACK	. 467
HS-DPCCH	205
Power Offset NACK/NACK	
HS-DPCCH	205
Power Offset PCI	
HS-DPCCH	
Power Ratio DPCCH/DPDCH	
Power reference	70
Power step	
Multi channel assistant	
Power Step	
TPC DPCCH	459
Power Step TPC DPCCH	000
F-DPCCH	
F-DPCH	. 391
Power Step TPC - DPCCH DPCCH	145
Power Up Steps	
PowMp	. 343
PCPCH	250
PowMP	
PowMpControl	
PowMpData	
PowPre	
PCPCH	
PRACH	. 200
PowMP	240
PowMpControl	
PowMpData	
PowPre	
PRACH only160	
PRACH settings	
Channel coding	
Graphical display	
Message part	
Preamble settings	
Preamble Length	
UL-DTX	168
Preamble Power	
	, 487
PRACH	, 496
Preamble Power Step	
PCPCH	
PRACH 243	, 497
Preamble Repetition	
PCPCH	
PRACH	
Precoding Weight Pattern (w2) 102, 108, 400	
Predefined H-Set	399
Predefined Settings	
Accept	375
Symbol Rate DPCH	
Propagation Delay	
Puncturing	
UE	452
R	
1	

Random Seed	120
Randomly Varying Modulation	120

Randomly Varying Number Of Codes	120
Rate Matching Attribute	
BS1	130
UE1	
Read Out Mode	
DPCCH 144, 179,	388, 460
F-DPCCH	
F-DPCH	391
PCPCH	257
Read Out Mode PCPCH	
PCPCH	493
Realtime functions	
Disabled in Baseband C/D	
Recall	
3GPP FDD settings	55
Redundancy Version Parameter	
Redundancy Version Parameter Sequence	
Reference Measurement Channel	
Reference measurement channel coding types	
Relative Grant Pattern	
Relative Grant Pattern HSUPA	418
Release notes	
Repeat PCPCH structure	252
Repeat PRACH structure	
Required BLER	
Required Pd	328
Reset all base stations	
Reset All Base Stations	
Reset All User Equipment	
Retransmission Sequence Number	
E-DPCCH	208, 519
Retrigger	58, 368
RF Frequency	
RF Power	290, 341
RMSpPower	70
Roll Off	260, 360
	200, 000

S

S-CCPCH Settings Safety instructions	
Save	
3GPP FDD settings	55
Scrambling code	
BS	80
Scrambling Code	
UE	
Scrambling Code (hex)	
Scrambling Code Step	
Scrambling Mode	
UE	161, 451
Secondary cell	10.1
Active	
Enabled	
Select Base Station	
Select User Equipment	
Sequence Length	000
ARB PCPCH	
Service manual	
Service manual	
BS	
Channel tabel	
HSDPA H-Set	
SF2	
SFN	/ -
SFN restart	

Short Scrambling Code		
UE		451
Show Coding		
PCPCH		258
PRACH		247
Signal Duration Unit		58
Signal generation status		58
Signaling Pattern		115
Signalling Pattern		
BS		404
Signature		
PCPCH	254,	489
PRACH	243,	499
Signature Hopping Pattern Index		150
Signature Sequence Index		418
Single		
Size of CRC		433
BS1		130
UE1	234,	541
Slot format	,	
4C-HSDPA		192
F-DPCCH		
Multi channel assistant		
Slot Format		
DPCCH		
Enhanced DPCH		
PCPCH		
PRACH		
Slot Format DPCCH		
Slot Structure		041
DPCCH		140
F-DPCCH		
S-CCPCH		
Spreading code generator (search code)		
Spreading Code Number		
Standard settings		
All channels		
BS		
HSDPA H-Set		
Start channel No		
Multi channel assistant		155
Start Channelization Code HS-PDSCH (SF16)		
Start Delay m		110
HS-DPCCH		180
Start Offset		103
PCPCH		100
PRACH	240	501
Start Offset PCPCH - UE		
State		
Bit Error		
Block Error		
Block Lifer		
Channel Coding		
Channel Coding Enhanced DPCHs		430
Channel Coding Enhanced P-CCPCH		
Clipping		
Compressed Mode		
DPDCH		
Dynamic Power Control		
E-DPCCH		
E-DPDCH		
Enhanced DPCH Channels		
Enhanced P-CCPCH		
HARQ		
HS-DPCCH HSUPA FRC		
		216
Interleaver 1 131, 234,		

Interleaver 2 131, 234, 433, 539	9
Multicode 142	
Transport Channel 437, 54	0
Transport Channel Enhanced DPCH129	9
UE	
UL-DTX	4
State - Clipping	
State (HARQ)	
HSUPA FRC	7
Step width power	
Multi channel assistant	7
Stop channel No	
Multi channel assistant	6
Store	0
3GPP FDD settings	5
Stream 2 Active Pattern 102, 108, 404, 409	
Structure Length	9
PRACH 24	1
Suggested ARB Sequence Length 105, 478	0
HS-DPCCH	9
Symbol rate	~
Multi channel assistant 156	
Symbol Rate	
BS	
DPDCH 183, 48	
E-DPDCH 223, 500	
Enhanced DPCH 128, 429	
PCPCH	
PRACH	
Symbol Rate DPCH 375	
Predefined Settings 7	
Sync. Output to External Trigger	9
System frame number 122	
System information BCH 122	2

Т

Тац	
DPCH	150 418
E-HICH	/ -
E-RGCH	, -
Test Case	
Test Model	
Test Models (not standardized)	
TFCI	
DPCCH	139. 142. 178
PCPCH	, ,
PRACH	
S-CCPCH	
Time	,
Preamble - Message Part	
Preamble - Preamble	
Time Delay	
BS	81, 425
UE	161
Time Delay Step	79
Additional UE	
Time Pre - MP	491, 494, 502
Time Pre - Pre	
Time Pre->MP	
Time Pre->Pre	251
Timing offset	
Multi channel assistant	158
Timing Offset	
DL-UL DPCCH	
To Destination	,
Total HS-PDSCH Power	

Total power		. 70
Total Power		
TPC data source		
DPCCH 1	43	178
PCPCH		
TPC Data Source		200
DPCCH		457
F-DPCH		
PCPCH		
TPC For Output Power Control (Mis-) Use		452
F-DPCCH		15/
TPC Mode		134
DPCCH 1	170	150
TPC Read Out Mode		
DPCCH 179, 3		
F-DPCCH		
F-DPCH		
PCPCH		
TPC Repeat Pattern		
TPC Start Pattern		
Transmission direction	56,	357
Transmission Time Interval		
E-DPCCH		
E-DPDCH		226
Transmit Diversity	81,	423
Transport Block Size	334,	338
BS1		130
UE1		
Transport Block Size Index 1		
HSUPA FRC	213	516
Transport Block Size Reference 1		
Transport Block Size Table 1		
HSUPA FRC		
Transport Blocks	. 10,	010
BS1		130
UE!		
		540
Transport Channel Enhanced DPCH		120
		129
Transport Time Interval BS1		400
UE1		
Trigger Configuration		
Trigger Delay		
Trigger Mode		
Trigger Signal Duration		
Trigger source		59
Turbo Coder		
BS1		131
UE12		
Turbo Coder - BS1		435
Tutorials		
Two HARQ feedback lines		
enabling		218
Type of Cell		
HSUPA 1	49.	417

U

UE category	
BS	407
UE Category	
HSDPA	106
HSUPA FRC	
UE Supports 64QAM	
UE_DTX_DRX_Offset	

UEID
A-EGCH
BS 110, 408
UL DTX
Up Range 170
Dynamic Power Control 137
Uplink
Use
UL-DTX
User scheduling 524
Use Channels needed for Sync of Mobile (UE) 76, 376
Use Compressed Mode
BS
UE
Use E-TFCI
E-DPCCH
Use S-CCPCH
Use S-CPICH as Phase Reference 81, 424
Use scrambling code
BS
Use Scrambling Code
BS
Use TFCI
DPCCH 138, 142, 177, 386, 456
S-CCPCH 138, 142
Use UL-DTX
User Coding 127, 535
UE1
User Data (DTX Pattern)
HSUPA FRC
User Equipment default values
User filter
User manual14

V

Version	56, 355
Virtual IR Buffer Size (per HARQ Process)	114
Visualizing data bits of DPDCH with an oscilloscope	182

W

Wanted Signal / Interferer Level	
Wanted Signal State	289, 341
White papers	15